def cook_svhn_complete(location, verbose=1, **kwargs): """ Wrapper to cook svhn dataset that creates the whole thing. Will take as input, Args: location: Where are the matlab files. save_directory: which directory to save the cooked dataset onto. dataset_parms: default is the dictionary. Refer to :mod:`setup_dataset` preprocess_params: default is the dictionary. Refer to :mod:`setup_dataset` Notes: This will also have the split parameter. """ if not 'data_params' in kwargs.keys(): data_params = { "source": 'matlab', # "name" : 'yann_svhn', # some name. "location": location, # some location to load from. "height": 32, "width": 32, "channels": 3, "batches2test": 13, "batches2train": 100, "mini_batches_per_batch": (10, 10, 10), "batches2validate": 13, "mini_batch_size": 500 } else: data_params = kwargs['data_params'] if not 'preprocess_params' in kwargs.keys(): # parameters relating to preprocessing. preprocess_params = { "normalize": True, "ZCA": False, "grayscale": False, "zero_mean": True, } else: preprocess_params = kwargs['preprocess_params'] if not 'save_directory' in kwargs.keys(): save_directory = '_datasets' else: save_directory = kwargs['save_directory'] if not 'splits' in kwargs.keys(): splits = {"base": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], "shot": [], "p": 0} else: splits = kwargs['splits'] dataset = split_only_train(dataset_init_args=data_params, save_directory=save_directory, preprocess_init_args=preprocess_params, split_args=splits, verbose=3) return dataset
def cook_split_inc(verbose=1, **kwargs): """ Wrapper to cook mnist dataset that also creates the rest of the dataset. Will take as input, Args: save_directory: which directory to save the cooked dataset onto. dataset_parms: default is the dictionary. Refer to :mod:`setup_dataset` preprocess_params: default is the dictionary. Refer to :mod:`setup_dataset` Notes: The base of this dataset will be classes 0,1,2,4,5,7,9 and the split will be classes 3,6,8. """ if not 'data_params' in kwargs.keys(): data_params = { "source": 'skdata', "name": 'cifar10', "location": '', "mini_batch_size": 100, "mini_batches_per_batch": (400, 100, 100), "batches2train": 1, "batches2test": 1, "batches2validate": 1, "height": 32, "width": 32, "channels": 3 } else: data_params = kwargs['data_params'] if not 'preprocess_params' in kwargs.keys(): # parameters relating to preprocessing. preprocess_params = { "normalize": True, "ZCA": False, "grayscale": False, "zero_mean": True, } else: preprocess_params = kwargs['preprocess_params'] if not 'save_directory' in kwargs.keys(): save_directory = '_datasets' else: save_directory = kwargs['save_directory'] if not 'splits' in kwargs.keys(): splits = {"base": [6, 7, 8, 9], "shot": [0, 1, 2, 3, 4, 5], "p": 0} else: splits = kwargs['splits'] dataset = split_only_train(dataset_init_args=data_params, save_directory=save_directory, preprocess_init_args=preprocess_params, split_args=splits, verbose=3) return dataset
def cook_mnist_complete(verbose = 1, **kwargs): """ Wrapper to cook mnist dataset that creates the whole thing. Will take as input, Args: save_directory: which directory to save the cooked dataset onto. dataset_parms: default is the dictionary. Refer to :mod:`setup_dataset` preprocess_params: default is the dictionary. Refer to :mod:`setup_dataset` Notes: This will also have the split parameter. """ if not 'data_params' in kwargs.keys(): data_params = { "source" : 'skdata', "name" : 'mnist_rotated', "location" : '', "mini_batch_size" : 500, "mini_batches_per_batch" : (80, 20, 20), "batches2train" : 1, "batches2test" : 1, "batches2validate" : 1, "height" : 28, "width" : 28, "channels" : 1 } else: data_params = kwargs['data_params'] if not 'preprocess_params' in kwargs.keys(): # parameters relating to preprocessing. preprocess_params = { "normalize" : True, "ZCA" : False, "grayscale" : False, "zero_mean" : True, } else: preprocess_params = kwargs['preprocess_params'] if not 'save_directory' in kwargs.keys(): save_directory = '_datasets' else: save_directory = kwargs ['save_directory'] if not 'splits' in kwargs.keys(): splits = { "base" : [0,1,2,3,4,5,6,7,8,9], "shot" : [], "p" : 0 } else: splits = kwargs ['splits'] dataset = split_only_train(dataset_init_args = data_params, save_directory = save_directory, preprocess_init_args = preprocess_params, split_args = splits, verbose = 3) return dataset