コード例 #1
0
def rfecv_quick_method(image="rfecv_quick_method.png"):
    X, y = load_credit()

    _, ax = plt.subplots()
    cv = StratifiedKFold(5)
    visualizer = rfecv(RandomForestClassifier(), X=X, y=y, ax=ax, cv=cv, scoring='f1_weighted')
    visualizer.show(outpath=os.path.join(IMAGES, image))
コード例 #2
0
def rfecv_credit_example(image="rfecv_credit.png"):
    X, y = load_credit()

    _, ax = plt.subplots()
    cv = StratifiedKFold(5)
    oz = RFECV(RandomForestClassifier(), ax=ax, cv=cv, scoring="f1_weighted")
    oz.fit(X, y)
    oz.poof(outpath=os.path.join(IMAGES, image))
コード例 #3
0
    def test_rank1d_quick_method(self):
        """
        Test Rank1d quick method
        """
        X, y = load_credit()
        viz = rank1d(X, y, show=False)

        assert isinstance(viz, Rank1D)
        self.assert_images_similar(viz, tol=0.1)
コード例 #4
0
def rfecv():
    X, y = load_credit()
    model = RandomForestClassifier(n_estimators=10)
    oz = RFECV(model, cv=3, scoring="f1_weighted", ax=newfig())
    oz.fit(X, y)
    savefig(oz, "rfecv_sklearn_example")
コード例 #5
0
def pca():
    X, y = load_credit()
    colors = np.array(["r" if yi else "b" for yi in y])
    oz = PCA(scale=True, color=colors, proj_dim=3)
    oz.fit_transform(X, y)
    savefig(oz, "pca_projection_3d")
コード例 #6
0
def rank2d():
    X, y = load_credit()
    oz = Rank2D(algorithm="covariance", ax=newfig())
    oz.fit_transform(X, y)
    savefig(oz, "rank2d_covariance")
コード例 #7
0
def rank1d():
    X, y = load_credit()
    oz = Rank1D(algorithm="shapiro", ax=newfig())
    oz.fit_transform(X, y)
    savefig(oz, "rank1d_shapiro")