results_file.write("\n# mAP of all classes\n") mAP = sum_AP / n_classes text = "mAP = {:.3f}%, {:.2f} FPS".format(mAP*100, fps) results_file.write(text + "\n") print(text) return mAP*100 if __name__ == '__main__': if YOLO_FRAMEWORK == "tf": # TensorFlow detection if YOLO_TYPE == "yolov4": Darknet_weights = YOLO_V4_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V4_WEIGHTS if YOLO_TYPE == "yolov3": Darknet_weights = YOLO_V3_TINY_WEIGHTS if TRAIN_YOLO_TINY else YOLO_V3_WEIGHTS if YOLO_CUSTOM_WEIGHTS == False: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(yolo, Darknet_weights) # use Darknet weights else: yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") # use custom weights elif YOLO_FRAMEWORK == "trt": # TensorRT detection saved_model_loaded = tf.saved_model.load(f"./checkpoints/{TRAIN_MODEL_NAME}", tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) yolo = saved_model_loaded.signatures['serving_default'] testset = Dataset('test', TEST_INPUT_SIZE=YOLO_INPUT_SIZE) get_mAP(yolo, testset, score_threshold=0.05, iou_threshold=0.50, TEST_INPUT_SIZE=YOLO_INPUT_SIZE)
def main(): global TRAIN_FROM_CHECKPOINT gpus = tf.config.experimental.list_physical_devices('GPU') print(f'GPUs {gpus}') if len(gpus) > 0: try: tf.config.experimental.set_memory_growth(gpus[0], True) except RuntimeError: pass if os.path.exists(TRAIN_LOGDIR): shutil.rmtree(TRAIN_LOGDIR) writer = tf.summary.create_file_writer(TRAIN_LOGDIR) trainset = Dataset('train') testset = Dataset('test') steps_per_epoch = len(trainset) global_steps = tf.Variable(1, trainable=False, dtype=tf.int64) warmup_steps = TRAIN_WARMUP_EPOCHS * steps_per_epoch total_steps = TRAIN_EPOCHS * steps_per_epoch if TRAIN_TRANSFER: Darknet = Create_Yolo(input_size=YOLO_INPUT_SIZE, CLASSES=YOLO_COCO_CLASSES) load_yolo_weights(Darknet, Darknet_weights) # use darknet weights yolo = Create_Yolo(input_size=YOLO_INPUT_SIZE, training=True, CLASSES=TRAIN_CLASSES) if TRAIN_FROM_CHECKPOINT: try: yolo.load_weights(f"./checkpoints/{TRAIN_MODEL_NAME}") except ValueError: print("Shapes are incompatible, transfering Darknet weights") TRAIN_FROM_CHECKPOINT = False if TRAIN_TRANSFER and not TRAIN_FROM_CHECKPOINT: for i, l in enumerate(Darknet.layers): layer_weights = l.get_weights() if layer_weights != []: try: yolo.layers[i].set_weights(layer_weights) except: print("skipping", yolo.layers[i].name) optimizer = tf.keras.optimizers.Adam() def train_step(image_data, target): with tf.GradientTape() as tape: pred_result = yolo(image_data, training=True) giou_loss = conf_loss = prob_loss = 0 # optimizing process grid = 3 if not TRAIN_YOLO_TINY else 2 for i in range(grid): conv, pred = pred_result[i * 2], pred_result[i * 2 + 1] loss_items = compute_loss(pred, conv, *target[i], i, CLASSES=TRAIN_CLASSES) giou_loss += loss_items[0] conf_loss += loss_items[1] prob_loss += loss_items[2] total_loss = giou_loss + conf_loss + prob_loss gradients = tape.gradient(total_loss, yolo.trainable_variables) optimizer.apply_gradients(zip(gradients, yolo.trainable_variables)) # update learning rate # about warmup: https://arxiv.org/pdf/1812.01187.pdf&usg=ALkJrhglKOPDjNt6SHGbphTHyMcT0cuMJg global_steps.assign_add(1) if global_steps < warmup_steps: # and not TRAIN_TRANSFER: lr = global_steps / warmup_steps * TRAIN_LR_INIT else: lr = TRAIN_LR_END + 0.5 * (TRAIN_LR_INIT - TRAIN_LR_END) * ( (1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi))) optimizer.lr.assign(lr.numpy()) # writing summary data with writer.as_default(): tf.summary.scalar("lr", optimizer.lr, step=global_steps) tf.summary.scalar("loss/total_loss", total_loss, step=global_steps) tf.summary.scalar("loss/giou_loss", giou_loss, step=global_steps) tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps) tf.summary.scalar("loss/prob_loss", prob_loss, step=global_steps) writer.flush() return global_steps.numpy(), optimizer.lr.numpy(), giou_loss.numpy( ), conf_loss.numpy(), prob_loss.numpy(), total_loss.numpy() validate_writer = tf.summary.create_file_writer(TRAIN_LOGDIR) def validate_step(image_data, target): with tf.GradientTape() as tape: pred_result = yolo(image_data, training=False) giou_loss = conf_loss = prob_loss = 0 # optimizing process grid = 3 if not TRAIN_YOLO_TINY else 2 for i in range(grid): conv, pred = pred_result[i * 2], pred_result[i * 2 + 1] loss_items = compute_loss(pred, conv, *target[i], i, CLASSES=TRAIN_CLASSES) giou_loss += loss_items[0] conf_loss += loss_items[1] prob_loss += loss_items[2] total_loss = giou_loss + conf_loss + prob_loss return giou_loss.numpy(), conf_loss.numpy(), prob_loss.numpy( ), total_loss.numpy() mAP_model = Create_Yolo( input_size=YOLO_INPUT_SIZE, CLASSES=TRAIN_CLASSES) # create second model to measure mAP best_val_loss = 1000 # should be large at start for epoch in range(TRAIN_EPOCHS): for image_data, target in trainset: results = train_step(image_data, target) cur_step = results[0] % steps_per_epoch print( "epoch:{:2.0f} step:{:5.0f}/{}, lr:{:.6f}, giou_loss:{:7.2f}, conf_loss:{:7.2f}, prob_loss:{:7.2f}, total_loss:{:7.2f}" .format(epoch, cur_step, steps_per_epoch, results[1], results[2], results[3], results[4], results[5])) if len(testset) == 0: print("configure TEST options to validate model") yolo.save_weights( os.path.join(TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME)) continue count, giou_val, conf_val, prob_val, total_val = 0., 0, 0, 0, 0 for image_data, target in testset: results = validate_step(image_data, target) count += 1 giou_val += results[0] conf_val += results[1] prob_val += results[2] total_val += results[3] # writing validate summary data with validate_writer.as_default(): tf.summary.scalar("validate_loss/total_val", total_val / count, step=epoch) tf.summary.scalar("validate_loss/giou_val", giou_val / count, step=epoch) tf.summary.scalar("validate_loss/conf_val", conf_val / count, step=epoch) tf.summary.scalar("validate_loss/prob_val", prob_val / count, step=epoch) validate_writer.flush() print( "\n\ngiou_val_loss:{:7.2f}, conf_val_loss:{:7.2f}, prob_val_loss:{:7.2f}, total_val_loss:{:7.2f}\n\n" .format(giou_val / count, conf_val / count, prob_val / count, total_val / count)) if TRAIN_SAVE_CHECKPOINT and not TRAIN_SAVE_BEST_ONLY: save_directory = os.path.join( TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME + "_val_loss_{:7.2f}".format(total_val / count)) yolo.save_weights(save_directory) if TRAIN_SAVE_BEST_ONLY and best_val_loss > total_val / count: save_directory = os.path.join(TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME) yolo.save_weights(save_directory) best_val_loss = total_val / count if not TRAIN_SAVE_BEST_ONLY and not TRAIN_SAVE_CHECKPOINT: save_directory = os.path.join(TRAIN_CHECKPOINTS_FOLDER, TRAIN_MODEL_NAME) yolo.save_weights(save_directory) # measure mAP of trained custom model mAP_model.load_weights(save_directory) # use keras weights get_mAP(mAP_model, testset, score_threshold=TEST_SCORE_THRESHOLD, iou_threshold=TEST_IOU_THRESHOLD)
from yolov3.dataset import Dataset from yolov3.yolov3 import Create_Yolov3, YOLOv3, decode, compute_loss from yolov3.utils import load_yolo_weights from yolov3.configs import * input_size = YOLO_INPUT_SIZE logdir = TRAIN_LOGDIR Darknet_weights = YOLO_DARKNET_WEIGHTS save_best_only = True # saves only best agent according validation loss save_checkpoints = False # saves all best validates checkpoints in training process (may require a lot disk space) if os.path.exists(logdir): shutil.rmtree(logdir) writer = tf.summary.create_file_writer(logdir) trainset = Dataset('train') testset = Dataset('test') steps_per_epoch = len(trainset) global_steps = tf.Variable(1, trainable=False, dtype=tf.int64) warmup_steps = TRAIN_WARMUP_EPOCHS * steps_per_epoch total_steps = TRAIN_EPOCHS * steps_per_epoch if TRAIN_TRANSFER: Darknet = Create_Yolov3(input_size=input_size) load_yolo_weights(Darknet, Darknet_weights) # use darknet weights yolo = Create_Yolov3(input_size=input_size, training=True, CLASSES=TRAIN_CLASSES) if TRAIN_TRANSFER: for i, l in enumerate(Darknet.layers): layer_weights = l.get_weights()