コード例 #1
0
def train():
    model = yolo_body()
    if os.path.exists(weights_path):
        print('+++++++++++++++++++++++++++++++++++++++++++++++++')
        model.load_weights(weights_path, by_name=True, skip_mismatch=True)

    model.compile(optimizer=Adam(lr=1e-3), loss=my_loss)

    model.fit_generator(
        generator=data_generator(data_train, batch_size=batch_size),
        steps_per_epoch=max(1, num_train // batch_size),
        validation_data=data_generator(data_test, batch_size=batch_size),
        validation_steps=max(1, num_test // batch_size),
        epochs=2,
        initial_epoch=0,
        callbacks=[logging, checkpoint, reduce_lr, early_stopping])
    model.save_weights(weights_path)
コード例 #2
0
def predict():
    model = yolo_body()
    model.load_weights(weights_path)
    imgs = list()
    for i in range(1):
        img_path = r'D:\project\data-set\test\挨络替糙骡_1547711365.jpg'
        img = resize_img(img_path)
        imgs.append(img)
        # img_expand = np.expand_dims(img, axis=0)
    imgs = np.array(imgs)
    y_pred = model.predict(x=imgs)
    print(y_pred.shape)
    # 给图片画box
    img_box = draw_box(y_pred, img)
    img_name = os.path.split(img_path)[-1]
    print(os.path.join(result_dir, img_name), img_name)
    img_box.save(os.path.join(result_dir, img_name))
コード例 #3
0
def predict():
    model = yolo_body()
    model.load_weights(weights_path)
    imgs = list()
    for i in range(1):
        img_path = os.path.join(r'D:\project\data-set\test', img_[0])
        img = resize_img(img_path)
        imgs.append(img)
        # img_expand = np.expand_dims(img, axis=0)
    imgs = np.array(imgs)
    y_pred = model.predict(x=imgs)
    print(y_pred[0].shape)
    # 给图片画box
    img_box = draw_box(y_pred, img)
    img_name = os.path.split(img_path)[-1].split('_')[0] + '_' + str(
        int(time.time())) + '.jpg'
    print(os.path.join(result_dir, img_name), img_name)
    img_box.save(os.path.join(result_dir, img_name))
コード例 #4
0
ファイル: test.py プロジェクト: dun933/character_detect
    def generate(self):
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        try:
            self.yolo_model = load_model(self.model_path, compile=False)
        except:
            self.yolo_model = yolo_body(Input(shape=(None, None, 3)),
                                        num_anchors // 3, num_classes)
            self.yolo_model.load_weights(
                self.model_path)  # make sure model, anchors and classes match

        print('{} model, anchors, and classes loaded.'.format(self.model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes