コード例 #1
0
ファイル: val.py プロジェクト: RI-SE/smirk
def run(
        data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        workers=8,  # max dataloader workers (per RANK in DDP mode)
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project=ROOT / 'runs/val',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        callbacks=Callbacks(),
        compute_loss=None,
):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device, pt, jit, engine = next(model.parameters(
        )).device, True, False, False  # get model device, PyTorch model

        half &= device.type != 'cpu'  # half precision only supported on CUDA
        model.half() if half else model.float()
    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name,
                                  exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
        stride, pt, jit, onnx, engine = model.stride, model.pt, model.jit, model.onnx, model.engine
        imgsz = check_img_size(imgsz, s=stride)  # check image size
        half &= (
            pt or jit or onnx or engine
        ) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
        if pt or jit:
            model.model.half() if half else model.model.float()
        elif engine:
            batch_size = model.batch_size
        else:
            half = False
            batch_size = 1  # export.py models default to batch-size 1
            device = torch.device('cpu')
            LOGGER.info(
                f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends'
            )

        # Data
        data = check_dataset(data)  # check

    # Configure
    model.eval()
    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(
        'coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz),
                     half=half)  # warmup
        pad = 0.0 if task == 'speed' else 0.5
        task = task if task in (
            'train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       stride,
                                       single_cls,
                                       pad=pad,
                                       rect=pt,
                                       workers=workers,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0,
                                        0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    pbar = tqdm(dataloader,
                desc=s,
                bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
        t1 = time_sync()
        if pt or jit or engine:
            im = im.to(device, non_blocking=True)
            targets = targets.to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        nb, _, height, width = im.shape  # batch size, channels, height, width
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        out, train_out = model(im) if training else model(
            im, augment=augment, val=True)  # inference, loss outputs
        dt[1] += time_sync() - t2

        # Loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out],
                                 targets)[1]  # box, obj, cls

        # NMS
        targets[:, 2:] *= torch.Tensor([width, height, width,
                                        height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:]
              for i in range(nb)] if save_hybrid else []  # for autolabelling
        t3 = time_sync()
        out = non_max_suppression(out,
                                  conf_thres,
                                  iou_thres,
                                  labels=lb,
                                  multi_label=True,
                                  agnostic=single_cls)
        dt[2] += time_sync() - t3

        # Metrics
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path, shape = Path(paths[si]), shapes[si][0]
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(im[si].shape[1:], predn[:, :4], shape,
                         shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_coords(im[si].shape[1:], tbox, shape,
                             shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox),
                                    1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
                if plots:
                    confusion_matrix.process_batch(predn, labelsn)
            else:
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(),
                          tcls))  # (correct, conf, pcls, tcls)

            # Save/log
            if save_txt:
                save_one_txt(predn,
                             save_conf,
                             shape,
                             file=save_dir / 'labels' / (path.stem + '.txt'))
            if save_json:
                save_one_json(predn, jdict, path,
                              class_map)  # append to COCO-JSON dictionary
            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(im, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(im, output_to_target(out), paths, f, names),
                   daemon=True).start()

    # Compute metrics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats,
                                                      plot=plots,
                                                      save_dir=save_dir,
                                                      names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            LOGGER.info(pf %
                        (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        LOGGER.info(
            f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        callbacks.run('on_val_end')

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = str(
            Path(data.get('path', '../coco')) /
            'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            LOGGER.info(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
コード例 #2
0
def evaluate(
    data: Path,
    weights: Path,
    conf_threshold: float = None,
    batch_size: int = 256,
    img_size: int = 640,
    iou_thres: float = 0.6,
) -> None:
    """Evaluate model on dataset

    Args:
        data_dir: Dataset dir path
        weights: Path to model.pt
        conf_threshold: Confidence threshold
        batch_size: Batch size
        img_size: Inference size (pixels)
        iou_thres: Non-max supression IoU threshold
    """
    device = select_device(batch_size=batch_size)  # cuda | cpu

    save_dir = config_paths.temp_dir_path / "yolo" / "eval" / str(int(time()))
    save_dir.mkdir(parents=True)

    model = DetectMultiBackend(weights, device)
    model.model.float()

    model.eval()
    img_size = check_img_size(img_size, s=model.stride)  # type:ignore
    model.warmup(imgsz=(1, 3, img_size, img_size))

    metadata = pd.read_csv(data / "metadata.csv")

    dataloader = create_dataloader(
        data,
        img_size,
        batch_size,
        model.stride,
        single_cls=False,
        pad=0.5,
        rect=True,
    )[0]

    # Configure
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector 0.5:0.95

    seen = 0
    stats: List[ImgRes] = []
    augmented_res = {}

    for batch_i, (im, targets, paths, shapes) in enumerate(tqdm(dataloader)):

        # Preprocess
        im = im.to(device, non_blocking=True)
        im = im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        *_, height, width = im.shape  # batch size, channels, height, width

        # [Total targetx x 6] = Tensor[[img_index, class, ...xcycwh-rel]]
        targets = targets.to(device)

        # Inference
        out, _ = model(im, val=True)  # inference, loss outputs

        # NMS

        # Out format (after NMS), sligthly unclear before NMS...
        # [Images x Predictions x [...xyxy-abs, conf, class]]
        # List[Tensor[Tensor[]]]
        # Looks like bboxes are in xyxy-abs format
        out = non_max_suppression(prediction=out,
                                  conf_thres=0.001,
                                  iou_thres=iou_thres)

        targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(
            device)  # to pixels i.e. Tensor[img_index, class, ...xcycwh-abs]

        # Metrics
        # Pred: Tensor[Predictions x [...xyxy-abs, conf class]]
        for si, pred in enumerate(out):  # for each image
            seen += 1
            path = Path(paths[si])  # path to img,
            shape = shapes[si][0]  # original img dimensions

            # Labels: Each target where image_index matches current index excluding image_index col
            #         i.e. all targets in current image [Targets x [class, ...xcyxcwh-abs]]
            labels = targets[targets[:, 0] == si, 1:]
            # target class, one entry for each labeled object

            labelsn = torch.Tensor()
            if len(labels):
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes [xyxy-abs]
                scale_coords(im[si].shape[1:], tbox, shape,
                             shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox),
                                    1)  # native-space labels

            predn = pred.clone()
            if len(pred):
                # Predictions
                # native-space pred
                # bbox was predicted on rescaled image (i.e. multiple of 32)
                # now we scale the predicted bbox to match the orignal image shape
                scale_coords(im[si].shape[1:], predn[:, :4], shape,
                             shapes[si][1])

            img_res = evaluate_single_img(labelsn, predn, iouv)

            if img_res is not None:
                stats.append(img_res)

            append_augmented_img_res(augmented_res, path, metadata, labelsn,
                                     predn, img_res)

        # Plot prediction examples
        if batch_i < 3:
            plot_batch_predictions(batch_i, save_dir, im, targets, out, paths)

    augmented_res_df = pd.DataFrame.from_dict(augmented_res, orient="index")
    augmented_res_df.sort_values(by=["run_id", "frame_index"], inplace=True)
    augmented_res_df.reset_index(inplace=True, drop=True)
    augmented_res_df.to_pickle(save_dir / f"{data.stem}-augmented-res.pkl")

    results_by_slice(augmented_res_df, save_dir, conf_threshold)