コード例 #1
0
ファイル: region_expression.py プロジェクト: tukss/yt
    def __getitem__(self, item):
        # At first, we will only implement this as accepting a slice that is
        # (optionally) unitful corresponding to a specific set of coordinates
        # that result in a rectangular prism or a slice.
        try:
            return self.all_data[item]
        except (TypeError, YTFieldNotParseable):
            pass

        if isinstance(item, slice):
            if obj_length(item.start) == 3 and obj_length(item.stop) == 3:
                # This is for a ray that is not orthogonal to an axis.
                # it's straightforward to do this, so we create a ray
                # and drop out here.
                return self._create_ray(item)
            else:
                # This is for the case where we give a slice as an index; one
                # possible use case of this would be where we supply something
                # like ds.r[::256j] .  This would be expanded, implicitly into
                # ds.r[::256j, ::256j, ::256j].  Other cases would be if we do
                # ds.r[0.1:0.9] where it will be expanded along all dimensions.
                item = tuple(item for _ in range(self.ds.dimensionality))

        if item is Ellipsis:
            item = (Ellipsis, )

        # from this point, item is implicitly assumed to be iterable
        if Ellipsis in item:
            # expand "..." into the appropriate number of ":"
            item = list(item)
            idx = item.index(Ellipsis)
            item.pop(idx)
            if Ellipsis in item:
                # this error mimics numpy's
                raise IndexError(
                    "an index can only have a single ellipsis ('...')")
            while len(item) < self.ds.dimensionality:
                item.insert(idx, slice(None))

        if len(item) != self.ds.dimensionality:
            # Not the right specification, and we don't want to do anything
            # implicitly.  Note that this happens *after* the implicit expansion
            # of a single slice.
            raise YTDimensionalityError(len(item), self.ds.dimensionality)

        # OK, now we need to look at our slices.  How many are a specific
        # coordinate?

        nslices = sum(isinstance(v, slice) for v in item)
        if nslices == 0:
            return self._create_point(item)
        elif nslices == 1:
            return self._create_ortho_ray(item)
        elif nslices == 2:
            return self._create_slice(item)
        else:
            if all(s.start is s.stop is s.step is None for s in item):
                return self.all_data
            return self._create_region(item)
コード例 #2
0
    def __getitem__(self, item):
        # At first, we will only implement this as accepting a slice that is
        # (optionally) unitful corresponding to a specific set of coordinates
        # that result in a rectangular prism or a slice.
        if isinstance(item, string_types):
            # This is some field; we will instead pass this back to the
            # all_data object.
            return self.all_data[item]
        if isinstance(item, tuple) and isinstance(item[1], string_types):
            return self.all_data[item]
        if isinstance(item, slice):
            if obj_length(item.start) == 3 and obj_length(item.stop) == 3:
                # This is for a ray that is not orthogonal to an axis.
                # it's straightforward to do this, so we create a ray
                # and drop out here.
                return self._create_ray(item)
            else:
                # This is for the case where we give a slice as an index; one
                # possible use case of this would be where we supply something
                # like ds.r[::256j] .  This would be expanded, implicitly into
                # ds.r[::256j, ::256j, ::256j].  Other cases would be if we do
                # ds.r[0.1:0.9] where it will be expanded along three dimensions.
                item = (item, item, item)
        if len(item) != self.ds.dimensionality:
            # Not the right specification, and we don't want to do anything
            # implicitly.  Note that this happens *after* the implicit expansion
            # of a single slice.
            raise YTDimensionalityError(len(item), self.ds.dimensionality)
        if self.ds.dimensionality != 3:
            # We'll pass on this for the time being.
            raise RuntimeError

        # OK, now we need to look at our slices.  How many are a specific
        # coordinate?

        nslices = sum(isinstance(v, slice) for v in item)
        if nslices == 0:
            return self._create_point(item)
        elif nslices == 1:
            return self._create_ortho_ray(item)
        elif nslices == 2:
            return self._create_slice(item)
        else:
            if all(s.start is s.stop is s.step is None for s in item):
                return self.all_data
            return self._create_region(item)
コード例 #3
0
def print_all_fields(fl):
    for fn in sorted(fl):
        df = fl[fn]
        f = df._function
        s = f"{df.name}"
        print(s)
        print("^" * len(s))
        print()
        if obj_length(df.units) > 0:
            # Most universal fields are in CGS except for these special fields
            if df.name[1] in [
                    "particle_position",
                    "particle_position_x",
                    "particle_position_y",
                    "particle_position_z",
                    "entropy",
                    "kT",
                    "metallicity",
                    "dx",
                    "dy",
                    "dz",
                    "cell_volume",
                    "x",
                    "y",
                    "z",
            ]:
                print(f"   * Units: :math:`{fix_units(df.units)}`")
            else:
                print(
                    f"   * Units: :math:`{fix_units(df.units, in_cgs=True)}`")
        print(f"   * Sampling Method: {df.sampling_type}")
        print()
        print("**Field Source**")
        print()
        if f == NullFunc:
            print("No source available.")
            print()
            continue
        else:
            print(".. code-block:: python")
            print()
            for line in inspect.getsource(f).split("\n"):
                print("  " + line)
            print()
コード例 #4
0
    def add_field(
        self,
        name: Tuple[str, str],
        function: Callable,
        sampling_type: str,
        *,
        alias: Optional[DerivedField] = None,
        force_override: bool = False,
        **kwargs,
    ) -> None:
        """
        Add a new field, along with supplemental metadata, to the list of
        available fields.  This respects a number of arguments, all of which
        are passed on to the constructor for
        :class:`~yt.data_objects.api.DerivedField`.

        Parameters
        ----------

        name : tuple[str, str]
           field (or particle) type, field name
        function : callable
           A function handle that defines the field.  Should accept
           arguments (field, data)
        sampling_type: str
           "cell" or "particle" or "local"
        force_override: bool
           If False (default), an error will be raised if a field of the same name already exists.
        alias: DerivedField (optional):
           existing field to be aliased
        units : str
           A plain text string encoding the unit.  Powers must be in
           python syntax (** instead of ^). If set to "auto" the units
           will be inferred from the return value of the field function.
        take_log : bool
           Describes whether the field should be logged
        validators : list
           A list of :class:`FieldValidator` objects
        vector_field : bool
           Describes the dimensionality of the field.  Currently unused.
        display_name : str
           A name used in the plots

        """
        # Handle the case where the field has already been added.
        if not force_override and name in self:
            return

        kwargs.setdefault("ds", self.ds)

        if not isinstance(function, Callable):  # type: ignore [arg-type]
            # type-checking is disabled because of https://github.com/python/mypy/issues/11071
            # this is compatible with lambdas and functools.partial objects
            raise TypeError(
                f"Expected a callable object, got {function} with type {type(function)}"
            )

        # lookup parameters that do not have default values
        fparams = inspect.signature(function).parameters
        nodefaults = tuple(p.name for p in fparams.values()
                           if p.default is p.empty)
        if nodefaults != ("field", "data"):
            raise TypeError(
                f"Received field function {function} with invalid signature. "
                f"Expected exactly 2 positional parameters ('field', 'data'), got {nodefaults!r}"
            )
        if any(fparams[name].kind == fparams[name].KEYWORD_ONLY
               for name in ("field", "data")):
            raise TypeError(
                f"Received field function {function} with invalid signature. "
                "Parameters 'field' and 'data' must accept positional values "
                "(they cannot be keyword-only)")

        sampling_type = self._sanitize_sampling_type(sampling_type)

        if (not isinstance(name, str) and obj_length(name) == 2
                and all(isinstance(e, str) for e in name)):
            self[name] = DerivedField(name,
                                      sampling_type,
                                      function,
                                      alias=alias,
                                      **kwargs)
        else:
            raise ValueError(
                f"Expected name to be a tuple[str, str], got {name}")