コード例 #1
0
def simulation(parameter_filename, simulation_type, find_outputs=False):
    """
    Loads a simulation time series object of the specified
    simulation type.
    """

    if simulation_type not in simulation_time_series_registry:
        raise YTSimulationNotIdentified(simulation_type)

    if os.path.exists(parameter_filename):
        valid_file = True
    elif os.path.exists(os.path.join(ytcfg.get("yt", "test_data_dir"),
                                     parameter_filename)):
        parameter_filename = os.path.join(ytcfg.get("yt", "test_data_dir"),
                                          parameter_filename)
        valid_file = True
    else:
        valid_file = False

    if not valid_file:
        raise YTOutputNotIdentified((parameter_filename, simulation_type),
                                    dict(find_outputs=find_outputs))

    return simulation_time_series_registry[simulation_type](parameter_filename,
                                                            find_outputs=find_outputs)
コード例 #2
0
ファイル: time_series.py プロジェクト: zackcd/yt
 def __new__(cls, outputs, *args, **kwargs):
     if isinstance(outputs, string_types):
         outputs = get_filenames_from_glob_pattern(outputs)
     ret = super(DatasetSeries, cls).__new__(cls)
     try:
         ret._pre_outputs = outputs[:]
     except TypeError:
         raise YTOutputNotIdentified(outputs, {})
     return ret
コード例 #3
0
ファイル: time_series.py プロジェクト: caicairay/yt
    def from_filenames(cls, filenames, parallel = True, setup_function = None,
                       **kwargs):
        r"""Create a time series from either a filename pattern or a list of
        filenames.

        This method provides an easy way to create a
        :class:`~yt.data_objects.time_series.DatasetSeries`, given a set of
        filenames or a pattern that matches them.  Additionally, it can set the
        parallelism strategy.

        Parameters
        ----------
        filenames : list or pattern
            This can either be a list of filenames (such as ["DD0001/DD0001",
            "DD0002/DD0002"]) or a pattern to match, such as
            "DD*/DD*.index").  If it's the former, they will be loaded in
            order.  The latter will be identified with the glob module and then
            sorted.
        parallel : True, False or int
            This parameter governs the behavior when .piter() is called on the
            resultant DatasetSeries object.  If this is set to False, the time
            series will not iterate in parallel when .piter() is called.  If
            this is set to either True or an integer, it will be iterated with
            1 or that integer number of processors assigned to each parameter
            file provided to the loop.
        setup_function : callable, accepts a ds
            This function will be called whenever a dataset is loaded.

        Examples
        --------

        >>> def print_time(ds):
        ...     print(ds.current_time)
        ...
        >>> ts = DatasetSeries.from_filenames(
        ...     "GasSloshingLowRes/sloshing_low_res_hdf5_plt_cnt_0[0-6][0-9]0",
        ...      setup_function = print_time)
        ...
        >>> for ds in ts:
        ...     SlicePlot(ds, "x", "Density").save()

        """
        
        if isinstance(filenames, str):
            filenames = get_filenames_from_glob_pattern(filenames)

        # This will crash with a less informative error if filenames is not
        # iterable, but the plural keyword should give users a clue...
        for fn in filenames:
            if not isinstance(fn, str):
                raise YTOutputNotIdentified("DataSeries accepts a list of "
                                            "strings, but "
                                            "received {0}".format(fn))
        obj = cls(filenames[:], parallel = parallel,
                  setup_function = setup_function, **kwargs)
        return obj
コード例 #4
0
ファイル: time_series.py プロジェクト: zackcd/yt
def get_filenames_from_glob_pattern(filenames):
    file_list = glob.glob(filenames)
    if len(file_list) == 0:
        data_dir = ytcfg.get("yt", "test_data_dir")
        pattern = os.path.join(data_dir, filenames)
        td_filenames = glob.glob(pattern)
        if len(td_filenames) > 0:
            file_list = td_filenames
        else:
            raise YTOutputNotIdentified(filenames, {})
    return sorted(file_list)
コード例 #5
0
def load(*args ,**kwargs):
    """
    This function attempts to determine the base data type of a filename or
    other set of arguments by calling
    :meth:`yt.data_objects.static_output.Dataset._is_valid` until it finds a
    match, at which point it returns an instance of the appropriate
    :class:`yt.data_objects.static_output.Dataset` subclass.
    """
    args = _sanitize_load_args(*args)
    candidates = []
    valid_file = []
    for argno, arg in enumerate(args):
        if isinstance(arg, str):
            if os.path.exists(arg):
                valid_file.append(True)
            elif arg.startswith("http"):
                valid_file.append(True)
            else:
                if os.path.exists(os.path.join(ytcfg.get("yt", "test_data_dir"), arg)):
                    valid_file.append(True)
                    args[argno] = os.path.join(ytcfg.get("yt", "test_data_dir"), arg)
                else:
                    valid_file.append(False)
        else:
            valid_file.append(False)
    types_to_check = output_type_registry
    if not any(valid_file):
        try:
            from yt.data_objects.time_series import DatasetSeries
            ts = DatasetSeries.from_filenames(*args, **kwargs)
            return ts
        except (TypeError, YTOutputNotIdentified):
            pass
        # We check if either the first argument is a dict or list, in which
        # case we try identifying candidates.
        if len(args) > 0 and isinstance(args[0], (list, dict)):
            # This fixes issues where it is assumed the first argument is a
            # file
            types_to_check = dict((n, v) for n, v in
                    output_type_registry.items() if n.startswith("stream_"))
            # Better way to do this is to override the output_type_registry
        else:
            mylog.error("None of the arguments provided to load() is a valid file")
            mylog.error("Please check that you have used a correct path")
            raise YTOutputNotIdentified(args, kwargs)
    for n, c in types_to_check.items():
        if n is None: continue
        if c._is_valid(*args, **kwargs): candidates.append(n)

    # convert to classes
    candidates = [output_type_registry[c] for c in candidates]
    # Find only the lowest subclasses, i.e. most specialised front ends
    candidates = find_lowest_subclasses(candidates)
    if len(candidates) == 1:
        return candidates[0](*args, **kwargs)
    if len(candidates) == 0:
        if ytcfg.get("yt", "enzo_db") != '' \
           and len(args) == 1 \
           and isinstance(args[0], str):
            erdb = EnzoRunDatabase()
            fn = erdb.find_uuid(args[0])
            n = "EnzoDataset"
            if n in output_type_registry \
               and output_type_registry[n]._is_valid(fn):
                return output_type_registry[n](fn)
        mylog.error("Couldn't figure out output type for %s", args[0])
        raise YTOutputNotIdentified(args, kwargs)

    mylog.error("Multiple output type candidates for %s:", args[0])
    for c in candidates:
        mylog.error("    Possible: %s", c)
    raise YTOutputNotIdentified(args, kwargs)
コード例 #6
0
def load(fn, *args, **kwargs):
    """
    Load a Dataset or DatasetSeries object.
    The data format is automatically discovered, and the exact return type is the
    corresponding subclass of :class:`yt.data_objects.static_output.Dataset`.
    A :class:`yt.data_objects.time_series.DatasetSeries` is created if the first
    argument is a pattern.

    Parameters
    ----------
    fn : str, os.Pathlike, or byte (types supported by os.path.expandusers)
        A path to the data location. This can be a file name, directory name, a glob
        pattern, or a url (for data types that support it).

    Additional arguments, if any, are passed down to the return class.

    Returns
    -------
    :class:`yt.data_objects.static_output.Dataset` object
        If fn is a single path, create a Dataset from the appropriate subclass.

    :class:`yt.data_objects.time_series.DatasetSeries`
        If fn is a glob pattern (i.e. containing wildcards '[]?!*'), create a series.

    Raises
    ------
    FileNotFoundError
        If fn does not match any existing file or directory.

    yt.utilities.exceptions.YTOutputNotIdentified
        If fn matches existing files or directories with undetermined format.

    yt.utilities.exceptions.YTAmbiguousDataType
        If the data format matches more than one class of similar specilization levels.
    """
    fn = os.path.expanduser(fn)

    if any(wildcard in fn for wildcard in "[]?!*"):
        from yt.data_objects.time_series import DatasetSeries

        return DatasetSeries(fn, *args, **kwargs)

    # Unless the dataset starts with http,
    # look for it using the path or relative to the data dir (in this order).
    if not (os.path.exists(fn) or fn.startswith("http")):
        data_dir = ytcfg.get("yt", "test_data_dir")
        alt_fn = os.path.join(data_dir, fn)
        if os.path.exists(alt_fn):
            fn = alt_fn
        else:
            msg = f"No such file or directory: '{fn}'."
            if os.path.exists(data_dir):
                msg += f"\n(Also tried '{alt_fn}')."
            raise FileNotFoundError(msg)

    candidates = []
    for cls in output_type_registry.values():
        if cls._is_valid(fn, *args, **kwargs):
            candidates.append(cls)

    # Find only the lowest subclasses, i.e. most specialised front ends
    candidates = find_lowest_subclasses(candidates)

    if len(candidates) == 1:
        return candidates[0](fn, *args, **kwargs)

    if len(candidates) > 1:
        raise YTAmbiguousDataType(fn, candidates)

    raise YTOutputNotIdentified(fn, args, kwargs)