コード例 #1
0
ファイル: test_sample.py プロジェクト: tukss/yt
def test_sample():

    grid = {}

    dims = np.array([64, 64, 64], dtype="int32")

    inds = np.indices(dims)
    grid["x"] = inds[0] + 0.5
    grid["y"] = inds[1] + 0.5
    grid["z"] = inds[2] + 0.5

    num_particles = np.int64(1000)

    xp = np.random.uniform(low=1.0, high=63.0, size=num_particles)
    yp = np.random.uniform(low=1.0, high=63.0, size=num_particles)
    zp = np.random.uniform(low=1.0, high=63.0, size=num_particles)

    xfield = np.zeros((num_particles))
    yfield = np.zeros((num_particles))
    zfield = np.zeros((num_particles))

    dx = 1.0
    le = np.zeros((3))

    CICSample_3(xp, yp, zp, xfield, num_particles, grid["x"], le, dims, dx)
    CICSample_3(xp, yp, zp, yfield, num_particles, grid["y"], le, dims, dx)
    CICSample_3(xp, yp, zp, zfield, num_particles, grid["z"], le, dims, dx)

    assert_allclose(xp, xfield)
    assert_allclose(yp, yfield)
    assert_allclose(zp, zfield)
コード例 #2
0
ファイル: particle_generator.py プロジェクト: victorgabr/yt
    def map_grid_fields_to_particles(self, mapping_dict):
        r"""
        For the fields in  *mapping_dict*, map grid fields to the particles
        using CIC sampling.

        Examples
        --------
        >>> field_map = {'density':'particle_density',
        >>>              'temperature':'particle_temperature'}
        >>> particles.map_grid_fields_to_particles(field_map)
        """
        pbar = get_pbar("Mapping fields to particles", self.num_grids)
        for i, grid in enumerate(self.ds.index.grids):
            pbar.update(i)
            if self.NumberOfParticles[i] > 0:
                start = self.ParticleGridIndices[i]
                end = self.ParticleGridIndices[i + 1]
                # Note we add one ghost zone to the grid!
                cube = grid.retrieve_ghost_zones(1, list(mapping_dict.keys()))
                le = np.array(grid.LeftEdge).astype(np.float64)
                dims = np.array(grid.ActiveDimensions).astype(np.int32)
                for gfield, pfield in mapping_dict.items():
                    self.field_units[pfield] = cube[gfield].units
                    field_index = self.field_list.index(pfield)
                    CICSample_3(self.particles[start:end, self.posx_index],
                                self.particles[start:end, self.posy_index],
                                self.particles[start:end, self.posz_index],
                                self.particles[start:end, field_index],
                                np.int64(self.NumberOfParticles[i]),
                                cube[gfield], le, dims, grid.dds[0])
        pbar.finish()
コード例 #3
0
    def _get_data(self, fields):
        """
        Get a list of fields to include in the trajectory collection.
        The trajectory collection itself is a dict of 2D numpy arrays,
        with shape (num_indices, num_steps)
        """

        missing_fields = [
            field for field in fields if field not in self.field_data
        ]
        if not missing_fields:
            return

        if self.suppress_logging:
            old_level = int(ytcfg.get("yt", "loglevel"))
            mylog.setLevel(40)
        ds_first = self.data_series[0]
        dd_first = ds_first.all_data()

        fds = {}
        new_particle_fields = []
        for field in missing_fields:
            fds[field] = dd_first._determine_fields(field)[0]
            if field not in self.particle_fields:
                if self.data_series[0]._get_field_info(
                        *fds[field]).particle_type:
                    self.particle_fields.append(field)
                    new_particle_fields.append(field)

        grid_fields = [
            field for field in missing_fields
            if field not in self.particle_fields
        ]
        step = int(0)
        pbar = get_pbar(
            f"Generating [{', '.join(missing_fields)}] fields in trajectories",
            self.num_steps,
        )
        my_storage = {}

        for i, (sto,
                ds) in enumerate(self.data_series.piter(storage=my_storage)):
            mask = self.masks[i]
            sort = self.sorts[i]
            pfield = {}

            if new_particle_fields:  # there's at least one particle field
                dd = ds.all_data()
                for field in new_particle_fields:
                    # This is easy... just get the particle fields
                    pfield[field] = dd[fds[field]].d[mask][sort]

            if grid_fields:
                # This is hard... must loop over grids
                for field in grid_fields:
                    pfield[field] = np.zeros(self.num_indices)
                x = self["particle_position_x"][:, step].d
                y = self["particle_position_y"][:, step].d
                z = self["particle_position_z"][:, step].d
                particle_grids, particle_grid_inds = ds.index._find_points(
                    x, y, z)

                # This will fail for non-grid index objects
                for grid in particle_grids:
                    cube = grid.retrieve_ghost_zones(1, grid_fields)
                    for field in grid_fields:
                        CICSample_3(
                            x,
                            y,
                            z,
                            pfield[field],
                            self.num_indices,
                            cube[fds[field]],
                            np.array(grid.LeftEdge).astype(np.float64),
                            np.array(grid.ActiveDimensions).astype(np.int32),
                            grid.dds[0],
                        )
            sto.result_id = ds.parameter_filename
            sto.result = (self.array_indices[i], pfield)
            pbar.update(step)
            step += 1
        pbar.finish()

        output_field = np.empty((self.num_indices, self.num_steps))
        output_field.fill(np.nan)
        for field in missing_fields:
            fd = fds[field]
            for i, (_fn, (indices,
                          pfield)) in enumerate(sorted(my_storage.items())):
                output_field[indices, i] = pfield[field]
            self.field_data[field] = array_like_field(dd_first,
                                                      output_field.copy(), fd)

        if self.suppress_logging:
            mylog.setLevel(old_level)