コード例 #1
0
ファイル: ai_kernal.py プロジェクト: thetimeofblack/zamia-ai
class AIKernal(object):
    def __init__(self, load_all_modules=False):

        self.config = misc.load_config('.airc')

        #
        # database
        #

        Session = sessionmaker(bind=model.engine)
        self.session = Session()

        #
        # TensorFlow (deferred, as tf can take quite a bit of time to set up)
        #

        self.tf_session = None
        self.nlp_model = None

        #
        # module management, setup
        #

        self.modules = {}
        self.initialized_modules = set()
        s = self.config.get('semantics', 'modules')
        self.all_modules = list(map(lambda s: s.strip(), s.split(',')))
        sys.path.append('modules')

        #
        # AIProlog parser, runtime
        #

        db_url = self.config.get('db', 'url')
        self.db = LogicDB(db_url)
        self.aip_parser = AIPrologParser(self)
        self.rt = AIPrologRuntime(self.db)
        self.dummyloc = SourceLocation('<rt>')

        #
        # alignment / word2vec (on-demand model loading)
        #
        self.w2v_model = None
        self.w2v_lang = None
        self.w2v_all_utterances = []

        #
        # load modules, if requested
        #
        if load_all_modules:
            for mn2 in self.all_modules:
                self.load_module(mn2)
                self.init_module(mn2)

    # FIXME: this will work only on the first call
    def setup_tf_model(self, mode, load_model, ini_fn, global_step=0):

        if not self.tf_session:

            import tensorflow as tf

            # setup config to use BFC allocator
            config = tf.ConfigProto()
            # config.gpu_options.allocator_type = 'BFC'

            self.tf_session = tf.Session(config=config)

        if not self.nlp_model:

            from nlp_model import NLPModel

            self.nlp_model = NLPModel(self.session,
                                      ini_fn,
                                      global_step=global_step)

            if load_model:

                self.nlp_model.load_dicts()

                # we need the inverse dict to reconstruct the output from tensor

                self.inv_output_dict = {
                    v: k
                    for k, v in viewitems(self.nlp_model.output_dict)
                }

                self.tf_model = self.nlp_model.create_tf_model(self.tf_session,
                                                               mode=mode)
                self.tf_model.batch_size = 1

                self.tf_model.restore(self.tf_session, self.nlp_model.model_fn)

    def clean(self, module_names, clean_all, clean_logic, clean_discourses,
              clean_cronjobs):

        for module_name in module_names:

            if clean_logic or clean_all:
                logging.info('cleaning logic for %s...' % module_name)
                if module_name == 'all':
                    self.db.clear_all_modules()
                else:
                    self.db.clear_module(module_name)

            if clean_discourses or clean_all:
                logging.info('cleaning discourses for %s...' % module_name)
                if module_name == 'all':
                    self.session.query(model.DiscourseRound).delete()
                else:
                    self.session.query(model.DiscourseRound).filter(
                        model.DiscourseRound.module == module_name).delete()

            if clean_cronjobs or clean_all:
                logging.info('cleaning cronjobs for %s...' % module_name)
                if module_name == 'all':
                    self.session.query(model.Cronjob).delete()
                else:
                    self.session.query(model.Cronjob).filter(
                        model.Cronjob.module == module_name).delete()

        self.session.commit()

    def load_module(self, module_name):

        if module_name in self.modules:
            return self.modules[module_name]

        logging.debug("loading module '%s'" % module_name)

        # fp, pathname, description = imp.find_module(module_name, ['modules'])
        fp, pathname, description = imp.find_module(module_name)

        # print fp, pathname, description

        m = None

        try:
            m = imp.load_module(module_name, fp, pathname, description)

            self.modules[module_name] = m

            # print m
            # print getattr(m, '__all__', None)

            # for name in dir(m):
            #     print name

            for m2 in getattr(m, 'DEPENDS'):
                self.load_module(m2)

            if hasattr(m, 'CRONJOBS'):

                # update cronjobs in db

                old_cronjobs = set()
                for cronjob in self.session.query(model.Cronjob).filter(
                        model.Cronjob.module == module_name):
                    old_cronjobs.add(cronjob.name)

                new_cronjobs = set()
                for name, interval, f in getattr(m, 'CRONJOBS'):

                    logging.debug('registering cronjob %s' % name)

                    cj = self.session.query(model.Cronjob).filter(
                        model.Cronjob.module == module_name,
                        model.Cronjob.name == name).first()
                    if not cj:
                        cj = model.Cronjob(module=module_name,
                                           name=name,
                                           last_run=0)
                        self.session.add(cj)

                    cj.interval = interval
                    new_cronjobs.add(cj.name)

                for cjn in old_cronjobs:
                    if cjn in new_cronjobs:
                        continue
                    self.session.query(model.Cronjob).filter(
                        model.Cronjob.module == module_name,
                        model.Cronjob.name == cjn).delete()

                self.session.commit()

            if hasattr(m, 'init_module'):
                initializer = getattr(m, 'init_module')
                initializer(self)

        except:
            logging.error('failed to load module "%s"' % module_name)
            logging.error(traceback.format_exc())
            sys.exit(1)

        finally:
            # Since we may exit via an exception, close fp explicitly.
            if fp:
                fp.close()

        return m

    def init_module(self, module_name, run_trace=False):

        if module_name in self.initialized_modules:
            return

        logging.debug("initializing module '%s'" % module_name)

        self.initialized_modules.add(module_name)

        m = self.load_module(module_name)

        if not m:
            raise Exception('init_module: module "%s" not found.' %
                            module_name)

        for m2 in getattr(m, 'DEPENDS'):
            self.init_module(m2)

        prolog_s = u'init(\'%s\')' % (module_name)
        c = self.aip_parser.parse_line_clause_body(prolog_s)

        self.rt.set_trace(run_trace)

        solutions = self.rt.search(c)

    def compile_module(self, module_name):

        m = self.modules[module_name]

        # clear module, delete old NLP training data

        self.db.clear_module(module_name, commit=True)
        self.session.query(model.TrainingData).filter(
            model.TrainingData.module == module_name).delete()
        self.session.query(model.TestCase).filter(
            model.TestCase.module == module_name).delete()
        self.session.query(model.NERData).filter(
            model.NERData.module == module_name).delete()

        # extract new training data for this module

        train_ds = []
        tests = []
        ner = {}

        if hasattr(m, 'nlp_train'):

            # training_data_cnt = 0

            logging.info('module %s python training data extraction...' %
                         module_name)

            nlp_train = getattr(m, 'nlp_train')
            train_ds.extend(nlp_train(self))

        if hasattr(m, 'nlp_test'):

            logging.info('module %s python test case extraction...' %
                         module_name)

            nlp_test = getattr(m, 'nlp_test')
            nlp_tests = nlp_test(self)
            tests.extend(nlp_tests)

        if hasattr(m, 'AIP_SOURCES'):

            logging.info('module %s AIP training data extraction...' %
                         module_name)

            for inputfn in m.AIP_SOURCES:
                ds, ts, ne = self.aip_parser.compile_file(
                    'modules/%s/%s' % (module_name, inputfn), module_name)

                train_ds.extend(ds)
                tests.extend(ts)

                for lang in ne:
                    if not lang in ner:
                        ner[lang] = {}
                    for cls in ne[lang]:
                        if not cls in ner[lang]:
                            ner[lang][cls] = {}
                        for entity in ne[lang][cls]:
                            ner[lang][cls][entity] = ne[lang][cls][entity]

        logging.info(
            'module %s training data extraction done. %d training samples, %d tests'
            % (module_name, len(train_ds), len(tests)))

        # put training data into our DB

        td_set = set()
        td_list = []

        for utt_lang, contexts, i, resp, loc_fn, loc_line, loc_col, prio in train_ds:

            inp = copy(contexts)
            inp.extend(i)

            inp_json = json.dumps(inp)
            resp_json = json.dumps(resp)

            # utterance = u' '.join(map(lambda c: text_type(c), contexts))
            # if utterance:
            #     utterance += u' '
            # utterance += u' '.join(i)
            utterance = u' '.join(i)

            k = utt_lang + '#0#' + '#' + inp_json + '#' + resp_json
            if not k in td_set:
                td_set.add(k)
                td_list.append(
                    model.TrainingData(
                        lang=utt_lang,
                        module=module_name,
                        utterance=utterance,
                        inp=inp_json,
                        resp=resp_json,
                        prio=prio,
                        loc_fn=loc_fn,
                        loc_line=loc_line,
                        loc_col=loc_col,
                    ))

        logging.info(
            'module %s training data conversion done. %d unique training samples.'
            % (module_name, len(td_list)))

        start_time = time.time()
        logging.info(u'bulk saving to db...')
        self.session.bulk_save_objects(td_list)
        self.session.commit()
        logging.info(u'bulk saving to db... done. Took %fs.' %
                     (time.time() - start_time))

        # put test data into our DB

        td_list = []

        for name, lang, prep, rounds, loc_fn, loc_line, loc_col in tests:

            prep_json = prolog_to_json(prep)
            rounds_json = json.dumps(rounds)

            td_list.append(
                model.TestCase(lang=lang,
                               module=module_name,
                               name=name,
                               prep=prep_json,
                               rounds=rounds_json,
                               loc_fn=loc_fn,
                               loc_line=loc_line,
                               loc_col=loc_col))

        logging.info('module %s test data conversion done. %d tests.' %
                     (module_name, len(td_list)))

        start_time = time.time()
        logging.info(u'bulk saving to db...')
        self.session.bulk_save_objects(td_list)
        self.session.commit()
        logging.info(u'bulk saving to db... done. Took %fs.' %
                     (time.time() - start_time))

        # put NER data into our DB

        # import pdb; pdb.set_trace()

        ner_list = []

        for lang in ner:
            for cls in ner[lang]:
                for entity in ner[lang][cls]:
                    ner_list.append(
                        model.NERData(lang=lang,
                                      module=module_name,
                                      cls=cls,
                                      entity=entity,
                                      label=ner[lang][cls][entity]))

        logging.info('module %s NER data conversion done. %d rows.' %
                     (module_name, len(ner_list)))

        start_time = time.time()
        logging.info(u'bulk saving to db...')
        self.session.bulk_save_objects(ner_list)
        self.session.commit()
        logging.info(u'bulk saving to db... done. Took %fs.' %
                     (time.time() - start_time))

        self.session.commit()

    def compile_module_multi(self, module_names):

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module(mn2)
                    self.compile_module(mn2)

            else:
                self.load_module(module_name)
                self.compile_module(module_name)

        self.session.commit()

    # _IGNORE_CONTEXT_KEYS = set([ 'user', 'lang', 'tokens', 'time', 'prev', 'resp' ])

    def _compute_net_input(self, res, cur_context):

        solutions = self.rt.search_predicate('tokens', [cur_context, '_1'],
                                             env=res)
        tokens = solutions[0]['_1'].l

        solutions = self.rt.search_predicate('context',
                                             [cur_context, '_2', '_3'],
                                             env=res)
        d = {}
        for s in solutions:

            k = s['_2']
            if not isinstance(k, Predicate):
                continue
            k = k.name

            v = s['_3']
            if isinstance(v, Predicate):
                v = v.name
            elif isinstance(v, StringLiteral):
                v = v.s
            else:
                v = text_type(v)

            d[k] = v

        # import pdb; pdb.set_trace()
        inp = []
        for t in reversed(tokens):
            inp.insert(0, t.s)

        for k in sorted(list(d)):
            inp.insert(0, [k, d[k]])

        return inp

    def find_prev_context(self, user, env={}):

        pc = None
        ctxid = 0

        # logging.debug ('find_prev_context: user=%s' % user)

        for s in self.rt.search_predicate('user', ['_1', Predicate(user)],
                                          env=env):

            cid = int(s['_1'].name[7:])
            if not pc or cid > ctxid:
                pc = s['_1']
            # logging.debug ('find_prev_context: s=%s, pc=%s' % (unicode(s), unicode(pc)))

        return pc

    def _setup_context(self, user, lang, inp, prev_context, prev_res):

        cur_context = Predicate(do_gensym(self.rt, 'context'))
        res = {}
        if ASSERT_OVERLAY_VAR_NAME in prev_res:
            res[ASSERT_OVERLAY_VAR_NAME] = prev_res[
                ASSERT_OVERLAY_VAR_NAME].clone()

        res = do_assertz(
            {},
            Clause(Predicate('user',
                             [cur_context, Predicate(user)]),
                   location=self.dummyloc),
            res=res)
        res = do_assertz(
            {},
            Clause(Predicate('lang',
                             [cur_context, Predicate(lang)]),
                   location=self.dummyloc),
            res=res)

        token_literal = ListLiteral(list(map(lambda x: StringLiteral(x), inp)))
        res = do_assertz({},
                         Clause(Predicate('tokens',
                                          [cur_context, token_literal]),
                                location=self.dummyloc),
                         res=res)

        currentTime = datetime.datetime.utcnow().replace(
            tzinfo=pytz.UTC).isoformat()
        res = do_assertz(
            {},
            Clause(Predicate(
                'time', [cur_context, StringLiteral(currentTime)]),
                   location=self.dummyloc),
            res=res)

        if prev_context:

            res = do_assertz({},
                             Clause(Predicate('prev',
                                              [cur_context, prev_context]),
                                    location=self.dummyloc),
                             res=res)

            # copy over all previous context statements to the new one
            s1s = self.rt.search_predicate('context',
                                           [prev_context, '_1', '_2'],
                                           env=res)
            for s1 in s1s:
                res = do_assertz(
                    {},
                    Clause(Predicate('context',
                                     [cur_context, s1['_1'], s1['_2']]),
                           location=self.dummyloc),
                    res=res)
            # copy over all previous mem statements to the new one
            s1s = self.rt.search_predicate('mem', [prev_context, '_1', '_2'],
                                           env=res)
            for s1 in s1s:
                res = do_assertz({},
                                 Clause(Predicate(
                                     'mem', [cur_context, s1['_1'], s1['_2']]),
                                        location=self.dummyloc),
                                 res=res)
            # import pdb; pdb.set_trace()

        res['C'] = cur_context

        return res, cur_context

    def _extract_response(self, cur_context, env):

        #import pdb; pdb.set_trace()

        res = []
        s2s = self.rt.search_predicate('c_say', [cur_context, '_1'], env=env)
        for s2 in s2s:
            if not '_1' in s2:
                continue
            res.append(s2['_1'].s)

        actions = []
        s2s = self.rt.search_predicate('c_action', [cur_context, '_1'],
                                       env=env)
        for s2 in s2s:
            if not '_1' in s2:
                continue
            actions.append(list(map(lambda x: text_type(x), s2['_1'].l)))

        score = 0.0
        s2s = self.rt.search_predicate('c_score', [cur_context, '_1'], env=env)
        for s2 in s2s:
            if not '_1' in s2:
                continue
            score += s2['_1'].f

        return res, actions, score

    def _reconstruct_prolog_code(self, acode):

        todo = [('and', [])]

        idx = 0
        while idx < len(acode):

            a = acode[idx]
            if a == 'or(':
                todo.append(('or', []))
            elif a == 'and(':
                todo.append(('and', []))
            elif a == ')':
                c = todo.pop()
                todo[len(todo) - 1][1].append(Predicate(c[0], c[1]))
            else:

                clause = self.aip_parser.parse_line_clause_body(a)

                todo[len(todo) - 1][1].append(clause.body)

            idx += 1

        if len(todo) != 1:
            logging.warn('unbalanced acode detected.')
            return None

        c = todo.pop()
        return Predicate(c[0], c[1])

    def test_module(self, module_name, run_trace=False, test_name=None):

        self.rt.set_trace(run_trace)

        m = self.modules[module_name]

        logging.info('running tests of module %s ...' % (module_name))

        num_tests = 0
        num_fails = 0
        for tc in self.session.query(
                model.TestCase).filter(model.TestCase.module == module_name):

            if test_name:
                if tc.name != test_name:
                    logging.info('skipping test %s' % tc.name)
                    continue

            num_tests += 1

            rounds = json.loads(tc.rounds)
            prep = json_to_prolog(tc.prep)

            round_num = 0
            prev_context = None
            res = {}

            for t_in, t_out, test_actions in rounds:

                test_in = u' '.join(t_in)
                test_out = u' '.join(t_out)

                logging.info("nlp_test: %s round %d test_in     : %s" %
                             (tc.name, round_num, repr(test_in)))
                logging.info("nlp_test: %s round %d test_out    : %s" %
                             (tc.name, round_num, repr(test_out)))
                logging.info("nlp_test: %s round %d test_actions: %s" %
                             (tc.name, round_num, repr(test_actions)))

                #if round_num>0:
                #    import pdb; pdb.set_trace()
                res, cur_context = self._setup_context(
                    user=TEST_USER,
                    lang=tc.lang,
                    inp=t_in,
                    prev_context=prev_context,
                    prev_res=res)
                # prep

                if prep:
                    # import pdb; pdb.set_trace()
                    # self.rt.set_trace(True)
                    for p in prep:
                        solutions = self.rt.search(Clause(
                            None, p, location=self.dummyloc),
                                                   env=res)
                        if len(solutions) != 1:
                            raise (PrologRuntimeError(
                                'Expected exactly one solution from preparation code for test "%s", got %d.'
                                % (tc.name, len(solutions))))
                        res = solutions[0]

                # inp / resp

                inp = self._compute_net_input(res, cur_context)

                # look up code in DB

                acode = None
                matching_resp = False
                for tdr in self.session.query(model.TrainingData).filter(
                        model.TrainingData.lang == tc.lang,
                        model.TrainingData.inp == json.dumps(inp)):
                    if acode:
                        logging.warn(
                            u'%s: more than one acode for test_in "%s" found in DB!'
                            % (tc.name, test_in))

                    acode = json.loads(tdr.resp)
                    pcode = self._reconstruct_prolog_code(acode)
                    clause = Clause(None, pcode, location=self.dummyloc)
                    solutions = self.rt.search(clause, env=res)
                    # import pdb; pdb.set_trace()

                    for solution in solutions:

                        actual_out, actual_actions, score = self._extract_response(
                            cur_context, solution)

                        # logging.info("nlp_test: %s round %d %s" % (clause.location, round_num, repr(abuf)) )

                        if len(test_out) > 0:
                            if len(actual_out) > 0:
                                actual_out = u' '.join(
                                    tokenize(u' '.join(actual_out), tc.lang))
                            logging.info(
                                "nlp_test: %s round %d actual_out  : %s (score: %f)"
                                % (tc.name, round_num, actual_out, score))
                            if actual_out != test_out:
                                logging.info(
                                    "nlp_test: %s round %d UTTERANCE MISMATCH."
                                    % (tc.name, round_num))
                                continue  # no match

                        logging.info(
                            "nlp_test: %s round %d UTTERANCE MATCHED!" %
                            (tc.name, round_num))

                        # check actions

                        if len(test_actions) > 0:

                            logging.info(
                                "nlp_test: %s round %d actual acts : %s" %
                                (tc.name, round_num, repr(actual_actions)))
                            # print repr(test_actions)

                            actions_matched = True
                            act = None
                            for action in test_actions:
                                for act in actual_actions:
                                    # print "    check action match: %s vs %s" % (repr(action), repr(act))
                                    if action == act:
                                        break
                                if action != act:
                                    actions_matched = False
                                    break

                            if not actions_matched:
                                logging.info(
                                    "nlp_test: %s round %d ACTIONS MISMATCH." %
                                    (tc.name, round_num))
                                continue

                            logging.info(
                                "nlp_test: %s round %d ACTIONS MATCHED!" %
                                (tc.name, round_num))

                        matching_resp = True
                        res = solution
                        break

                    if matching_resp:
                        break

                if acode is None:
                    logging.error('failed to find db entry for %s' %
                                  json.dumps(inp))
                    logging.error(
                        u'Error: %s: no training data for test_in "%s" found in DB!'
                        % (tc.name, test_in))
                    num_fails += 1
                    break

                if not matching_resp:
                    logging.error(
                        u'nlp_test: %s round %d no matching response found.' %
                        (tc.name, round_num))
                    num_fails += 1
                    break

                prev_context = cur_context
                round_num += 1

        self.rt.set_trace(False)

        return num_tests, num_fails

    def run_tests_multi(self, module_names, run_trace=False, test_name=None):

        num_tests = 0
        num_fails = 0

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module(mn2)
                    self.init_module(mn2, run_trace=run_trace)
                    n, f = self.test_module(mn2,
                                            run_trace=run_trace,
                                            test_name=test_name)
                    num_tests += n
                    num_fails += f

            else:
                self.load_module(module_name)
                self.init_module(module_name, run_trace=run_trace)
                n, f = self.test_module(module_name,
                                        run_trace=run_trace,
                                        test_name=test_name)
                num_tests += n
                num_fails += f

        return num_tests, num_fails

    def _process_input_nnet(self, inp, res):

        solutions = []

        logging.debug('_process_input_nnet: %s' % repr(inp))

        try:

            # ok, exact matching has not yielded any results -> use neural network to
            # generate response(s)

            x = self.nlp_model.compute_x(inp)

            # logging.debug("x: %s -> %s" % (utterance, x))

            source, source_len, dest, dest_len = self.nlp_model._prepare_batch(
                [[x, []]], offset=0)

            # predicted_ids: GreedyDecoder; [batch_size, max_time_step, 1]
            # BeamSearchDecoder; [batch_size, max_time_step, beam_width]
            predicted_ids = self.tf_model.predict(
                self.tf_session,
                encoder_inputs=source,
                encoder_inputs_length=source_len)

            # for seq_batch in predicted_ids:
            #     for k in range(5):
            #         logging.debug('--------- k: %d ----------' % k)
            #         seq = seq_batch[:,k]
            #         for p in seq:
            #             if p == -1:
            #                 break
            #             decoded = self.inv_output_dict[p]
            #             logging.debug (u'%s: %s' %(p, decoded))

            # extract best codes only

            acodes = [[]]
            for p in predicted_ids[0][:, 0]:
                if p == -1:
                    break
                decoded = self.inv_output_dict[p]
                if decoded == u'_EOS':
                    break
                if decoded == u'__OR__':
                    acodes.append([])
                acodes[len(acodes) - 1].append(decoded)

            # FIXME: for now, we try the first solution only
            acode = acodes[0]

            pcode = self._reconstruct_prolog_code(acode)
            logging.debug('_process_input_nnet: %s' % pcode)
            clause = Clause(None, pcode, location=self.dummyloc)
            solutions = self.rt.search(clause, env=res)

        except:
            # probably ok (prolog code generated by neural network might not always work)
            logging.error('EXCEPTION CAUGHT %s' % traceback.format_exc())

        return solutions

    def process_input(self,
                      utterance,
                      utt_lang,
                      user_uri,
                      run_trace=False,
                      do_eliza=True,
                      prev_ctx=None):
        """ process user input, return score, responses, actions, solutions, context """

        prev_context = prev_ctx
        res = {}

        tokens = tokenize(utterance, utt_lang)

        res, cur_context = self._setup_context(user=user_uri,
                                               lang=utt_lang,
                                               inp=tokens,
                                               prev_context=prev_context,
                                               prev_res=res)

        inp = self._compute_net_input(res, cur_context)

        logging.debug('process_input: %s' % repr(inp))

        #
        # do we have an exact match in our training data for this input?
        #

        solutions = []

        self.rt.set_trace(run_trace)
        for tdr in self.session.query(model.TrainingData).filter(
                model.TrainingData.lang == utt_lang,
                model.TrainingData.inp == json.dumps(inp)):

            acode = json.loads(tdr.resp)
            pcode = self._reconstruct_prolog_code(acode)
            clause = Clause(None, pcode, location=self.dummyloc)
            sols = self.rt.search(clause, env=res)

            if sols:
                solutions.extend(sols)

        if not solutions:

            solutions = self._process_input_nnet(inp, res)

            #
            # try dropping the context if we haven't managed to produce a result yet
            #

            if not solutions:
                res, cur_context = self._setup_context(user=user_uri,
                                                       lang=utt_lang,
                                                       inp=tokens,
                                                       prev_context=None,
                                                       prev_res={})
                inp = self._compute_net_input(res, cur_context)
                solutions = self._process_input_nnet(inp, res)

            if not solutions and do_eliza:
                logging.info('producing ELIZA-style response for input %s' %
                             utterance)
                clause = self.aip_parser.parse_line_clause_body(
                    'do_eliza(C, %s)' % utt_lang)
                solutions = self.rt.search(clause, env=res)

        self.rt.set_trace(False)

        #
        # extract highest-scoring responses only:
        #

        best_score = 0
        best_resps = []
        best_actions = []
        best_solutions = []

        for solution in solutions:

            actual_resp, actual_actions, score = self._extract_response(
                cur_context, solution)

            if score > best_score:
                best_score = score
                best_resps = []
                best_actions = []
                best_solutions = []

            if score < best_score:
                continue

            best_resps.append(actual_resp)
            best_actions.append(actual_actions)
            best_solutions.append(solution)

        return best_score, best_resps, best_actions, best_solutions, cur_context

    def run_cronjobs(self, module_name, force=False, run_trace=False):

        m = self.modules[module_name]
        if not hasattr(m, 'CRONJOBS'):
            return

        self.rt.set_trace(run_trace)

        for name, interval, f in getattr(m, 'CRONJOBS'):

            cronjob = self.session.query(model.Cronjob).filter(
                model.Cronjob.module == module_name,
                model.Cronjob.name == name).first()

            t = time.time()

            next_run = cronjob.last_run + interval

            if force or t > next_run:

                logging.debug('running cronjob %s' % name)
                f(self)

                cronjob.last_run = t

    def run_cronjobs_multi(self, module_names, force, run_trace=False):

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module(mn2)
                    self.init_module(mn2)
                    self.run_cronjobs(mn2, force=force, run_trace=run_trace)

            else:
                self.load_module(module_name)
                self.init_module(module_name)
                self.run_cronjobs(module_name,
                                  force=force,
                                  run_trace=run_trace)

        self.session.commit()

    def train(self, ini_fn, num_steps, incremental):

        self.setup_tf_model('train', False, ini_fn)
        self.nlp_model.train(num_steps, incremental)

    def dump_utterances(self, num_utterances, dictfn, lang, module):

        dic = None
        if dictfn:
            dic = set()
            with codecs.open(dictfn, 'r', 'utf8') as dictf:
                for line in dictf:
                    parts = line.strip().split(';')
                    if len(parts) != 2:
                        continue
                    dic.add(parts[0])

        all_utterances = []

        req = self.session.query(
            model.TrainingData).filter(model.TrainingData.lang == lang)

        if module and module != 'all':
            req = req.filter(model.TrainingData.module == module)

        for dr in req:

            if not dic:
                all_utterances.append(dr.utterance)
            else:

                # is at least one word not covered by our dictionary?

                unk = False
                for t in tokenize(dr.utterance):
                    if not t in dic:
                        # print u"unknown word: %s in %s" % (t, dr.utterance)
                        unk = True
                        dic.add(t)
                        break
                if not unk:
                    continue

                all_utterances.append(dr.utterance)

        utts = set()

        if num_utterances > 0:

            while (len(utts) < num_utterances):

                i = random.randrange(0, len(all_utterances))
                utts.add(all_utterances[i])

        else:
            for utt in all_utterances:
                utts.add(utt)

        for utt in utts:
            print(utt)

    def setup_align_utterances(self, lang):
        if self.w2v_model and self.w2v_lang == lang:
            return

        logging.debug('loading all utterances from db...')

        self.w2v_all_utterances = []
        req = self.session.query(
            model.TrainingData).filter(model.TrainingData.lang == lang)
        for dr in req:
            self.w2v_all_utterances.append(
                (dr.utterance, dr.module, dr.loc_fn, dr.loc_line))

        if not self.w2v_model:
            from gensim.models import word2vec

        model_fn = self.config.get('semantics', 'word2vec_model_%s' % lang)
        logging.debug('loading word2vec model %s ...' % model_fn)
        logging.getLogger('gensim.models.word2vec').setLevel(logging.WARNING)
        self.w2v_model = word2vec.Word2Vec.load_word2vec_format(model_fn,
                                                                binary=True)
        self.w2v_lang = lang
        #list containing names of words in the vocabulary
        self.w2v_index2word_set = set(self.w2v_model.index2word)
        logging.debug('loading word2vec model %s ... done' % model_fn)

    def align_utterances(self, lang, utterances):

        self.setup_align_utterances(lang)

        res = {}

        for utt1 in utterances:
            try:
                utt1t = tokenize(utt1, lang=lang)
                av1 = avg_feature_vector(
                    utt1t,
                    model=self.w2v_model,
                    num_features=300,
                    index2word_set=self.w2v_index2word_set)

                sims = {}  # location -> score
                utts = {}  # location -> utterance

                for utt2, module, loc_fn, loc_line in self.w2v_all_utterances:
                    try:
                        utt2t = tokenize(utt2, lang=lang)

                        av2 = avg_feature_vector(
                            utt2t,
                            model=self.w2v_model,
                            num_features=300,
                            index2word_set=self.w2v_index2word_set)

                        sim = 1 - cosine(av1, av2)

                        location = '%s:%s:%d' % (module, loc_fn, loc_line)
                        sims[location] = sim
                        utts[location] = utt2
                        # logging.debug('%10.8f %s' % (sim, location))
                    except:
                        logging.error('EXCEPTION CAUGHT %s' %
                                      traceback.format_exc())
                logging.info('sims for %s' % repr(utt1))
                cnt = 0
                res[utt1] = []
                for sim, location in sorted(
                    ((v, k) for k, v in sims.iteritems()), reverse=True):
                    logging.info('%10.8f %s' % (sim, location))
                    logging.info('    %s' % (utts[location]))

                    res[utt1].append((sim, location, utts[location]))

                    cnt += 1
                    if cnt > 5:
                        break
            except:
                logging.error('EXCEPTION CAUGHT %s' % traceback.format_exc())

        return res
コード例 #2
0
ファイル: ai_kernal.py プロジェクト: EVODelavega/zamia-ai
class AIKernal(object):

    def __init__(self):

        self.config = misc.load_config('.airc')

        #
        # database
        #

        Session = sessionmaker(bind=model.engine)
        self.session = Session()

        #
        # logic DB
        #

        self.db = LogicDB(model.url)

        #
        # knowledge base
        #

        self.kb = AIKB()

        #
        # TensorFlow (deferred, as tf can take quite a bit of time to set up)
        #

        self.tf_session = None
        self.nlp_model  = None

        #
        # module management, setup
        #

        self.modules  = {}
        s = self.config.get('semantics', 'modules')
        self.all_modules = map (lambda s: s.strip(), s.split(','))

        #
        # prolog environment setup
        #

        self.prolog_rt = AIPrologRuntime(self.db, self.kb)
        self.parser    = AIPrologParser()


    # FIXME: this will work only on the first call
    def setup_tf_model (self, forward_only, load_model):

        if not self.tf_session:

            import tensorflow as tf

            # setup config to use BFC allocator
            config = tf.ConfigProto()  
            config.gpu_options.allocator_type = 'BFC'

            self.tf_session = tf.Session(config=config)

        if not self.nlp_model:

            from nlp_model import NLPModel

            self.nlp_model = NLPModel(self.session)

            if load_model:

                self.nlp_model.load_dicts()

                # we need the inverse dict to reconstruct the output from tensor

                self.inv_output_dict = {v: k for k, v in self.nlp_model.output_dict.iteritems()}

                self.tf_model = self.nlp_model.create_tf_model(self.tf_session, forward_only = forward_only) 
                self.tf_model.batch_size = 1

                self.nlp_model.load_model(self.tf_session)


    def clean (self, module_names, clean_all, clean_logic, clean_discourses, 
                                   clean_cronjobs, clean_kb):

        for module_name in module_names:

            if clean_logic or clean_all:
                logging.info('cleaning logic for %s...' % module_name)
                if module_name == 'all':
                    self.db.clear_all_modules()
                else:
                    self.db.clear_module(module_name)

            if clean_discourses or clean_all:
                logging.info('cleaning discourses for %s...' % module_name)
                if module_name == 'all':
                    self.session.query(model.DiscourseRound).delete()
                else:
                    self.session.query(model.DiscourseRound).filter(model.DiscourseRound.module==module_name).delete()

            if clean_cronjobs or clean_all:
                logging.info('cleaning cronjobs for %s...' % module_name)
                if module_name == 'all':
                    self.session.query(model.Cronjob).delete()
                else:
                    self.session.query(model.Cronjob).filter(model.Cronjob.module==module_name).delete()

            if clean_kb or clean_all:
                logging.info('cleaning kb for %s...' % module_name)
                if module_name == 'all':
                    self.kb.clear_all_graphs()
                else:
                    graph = self._module_graph_name(module_name)
                    self.kb.clear_graph(graph)

        self.session.commit()

    def load_module (self, module_name, run_init=False, run_trace=False):

        if module_name in self.modules:
            return self.modules[module_name]

        logging.debug("loading module '%s'" % module_name)

        fp, pathname, description = imp.find_module(module_name, ['modules'])

        # print fp, pathname, description

        m = None

        try:
            m = imp.load_module(module_name, fp, pathname, description)

            self.modules[module_name] = m

            # print m
            # print getattr(m, '__all__', None)

            # for name in dir(m):
            #     print name

            for m2 in getattr (m, 'DEPENDS'):
                self.load_module(m2, run_init=run_init, run_trace=run_trace)

            if hasattr(m, 'RDF_PREFIXES'):
                prefixes = getattr(m, 'RDF_PREFIXES')
                for prefix in prefixes:
                    self.kb.register_prefix(prefix, prefixes[prefix])

            if hasattr(m, 'LDF_ENDPOINTS'):
                endpoints = getattr(m, 'LDF_ENDPOINTS')
                for endpoint in endpoints:
                    self.kb.register_endpoint(endpoint, endpoints[endpoint])

            if hasattr(m, 'RDF_ALIASES'):
                aliases = getattr(m, 'RDF_ALIASES')
                for alias in aliases:
                    self.kb.register_alias(alias, aliases[alias])

            if hasattr(m, 'CRONJOBS'):

                # update cronjobs in db

                old_cronjobs = set()
                for cronjob in self.session.query(model.Cronjob).filter(model.Cronjob.module==module_name):
                    old_cronjobs.add(cronjob.name)

                new_cronjobs = set()
                for name, interval, f in getattr (m, 'CRONJOBS'):

                    logging.debug ('registering cronjob %s' %name)

                    cj = self.session.query(model.Cronjob).filter(model.Cronjob.module==module_name, model.Cronjob.name==name).first()
                    if not cj:
                        cj = model.Cronjob(module=module_name, name=name, last_run=0)
                        self.session.add(cj)

                    cj.interval = interval
                    new_cronjobs.add(cj.name)

                for cjn in old_cronjobs:
                    if cjn in new_cronjobs:
                        continue
                    self.session.query(model.Cronjob).filter(model.Cronjob.module==module_name, model.Cronjob.name==cjn).delete()

                self.session.commit()

            if run_init:
                gn = rdflib.Graph(identifier=CONTEXT_GRAPH_NAME)
                self.kb.remove((CURIN, None, None, gn))

                quads = [ ( CURIN, KB_PREFIX+u'user', DEFAULT_USER, gn) ]

                self.kb.addN_resolve(quads)

                prolog_s = u'init(\'%s\')' % (module_name)
                c = self.parser.parse_line_clause_body(prolog_s)

                self.prolog_rt.set_trace(run_trace)

                self.prolog_rt.reset_actions()
            
                solutions = self.prolog_rt.search(c)

                # import pdb; pdb.set_trace()
            
                actions = self.prolog_rt.get_actions()
                for action in actions:
                    self.prolog_rt.execute_builtin_actions(action)


        except:
            logging.error(traceback.format_exc())

        finally:
            # Since we may exit via an exception, close fp explicitly.
            if fp:
                fp.close()

        return m

    def _module_graph_name (self, module_name):
        return KB_PREFIX + module_name

    def import_kb (self, module_name):

        graph = self._module_graph_name(module_name)

        self.kb.register_graph(graph)

        # disabled to enable incremental kb updates self.kb.clear_graph(graph)

        m = self.modules[module_name]

        # import LDF first as it is incremental

        res_paths = []
        for kb_entry in getattr (m, 'KB_SOURCES'):
            if not isinstance(kb_entry, basestring):
                res_paths.append(kb_entry)

        if len(res_paths)>0:
            logging.info('mirroring from LDF endpoints, target graph: %s ...' % graph)
            quads = self.kb.ldf_mirror(res_paths, graph)

        # now import files, if any

        for kb_entry in getattr (m, 'KB_SOURCES'):
            if isinstance(kb_entry, basestring):
                kb_pathname = 'modules/%s/%s' % (module_name, kb_entry)
                logging.info('importing %s ...' % kb_pathname)
                self.kb.parse_file(graph, 'n3', kb_pathname)


    def import_kb_multi (self, module_names):

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module (mn2)
                    self.import_kb (mn2)

            else:

                self.load_module (module_name)

                self.import_kb (module_name)

        self.session.commit()

    def compile_module (self, module_name, trace=False, print_utterances=False, warn_level=0):

        m = self.modules[module_name]

        logging.debug('parsing sources of module %s (print_utterances: %s) ...' % (module_name, print_utterances))

        compiler = AIPrologParser (trace=trace, print_utterances=print_utterances, warn_level=warn_level)

        compiler.clear_module(module_name, self.db)

        for pl_fn in getattr (m, 'PL_SOURCES'):
            
            pl_pathname = 'modules/%s/%s' % (module_name, pl_fn)

            logging.debug('   parsing %s ...' % pl_pathname)
            compiler.compile_file (pl_pathname, module_name, self.db, self.kb)

    def compile_module_multi (self, module_names, run_trace=False, print_utterances=False, warn_level=0):

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module (mn2)
                    self.compile_module (mn2, run_trace, print_utterances, warn_level)

            else:
                self.load_module (module_name)
                self.compile_module (module_name, run_trace, print_utterances, warn_level)

        self.session.commit()

    def process_input (self, utterance, utt_lang, user_uri, test_mode=False, trace=False):

        """ process user input, return action(s) """

        gn = rdflib.Graph(identifier=CONTEXT_GRAPH_NAME)

        tokens = tokenize(utterance, utt_lang)

        self.kb.remove((CURIN, None, None, gn))

        quads = [ ( CURIN, KB_PREFIX+u'user',      user_uri,                                        gn),
                  ( CURIN, KB_PREFIX+u'utterance', utterance,                                       gn),
                  ( CURIN, KB_PREFIX+u'uttLang',   utt_lang,                                        gn),
                  ( CURIN, KB_PREFIX+u'tokens',    pl_literal_to_rdf(ListLiteral(tokens), self.kb), gn)
                  ]

        if test_mode:
            quads.append( ( CURIN, KB_PREFIX+u'currentTime', pl_literal_to_rdf(NumberLiteral(TEST_TIME), self.kb), gn ) )
        else:
            quads.append( ( CURIN, KB_PREFIX+u'currentTime', pl_literal_to_rdf(NumberLiteral(time.time()), self.kb), gn ) )
   
        self.kb.addN_resolve(quads)

        self.prolog_rt.reset_actions()

        if test_mode:

            for dr in self.db.session.query(model.DiscourseRound).filter(model.DiscourseRound.inp==utterance, 
                                                                         model.DiscourseRound.lang==utt_lang):
            
                prolog_s = ','.join(dr.resp.split(';'))

                logging.info("test tokens=%s prolog_s=%s" % (repr(tokens), prolog_s) )
                
                c = self.parser.parse_line_clause_body(prolog_s)
                # logging.debug( "Parse result: %s" % c)

                # logging.debug( "Searching for c: %s" % c )

                solutions = self.prolog_rt.search(c)

                # if len(solutions) == 0:
                #     raise PrologError ('nlp_test: %s no solution found.' % clause.location)
            
                # print "round %d utterances: %s" % (round_num, repr(prolog_rt.get_utterances())) 

        return self.prolog_rt.get_actions()

    # FIXME: merge into process_input
    def process_line(self, line):

        self.setup_tf_model (True, True)
        from nlp_model import BUCKETS

        x = self.nlp_model.compute_x(line)

        logging.debug("x: %s -> %s" % (line, x))

        # which bucket does it belong to?
        bucket_id = min([b for b in xrange(len(BUCKETS)) if BUCKETS[b][0] > len(x)])

        # get a 1-element batch to feed the sentence to the model
        encoder_inputs, decoder_inputs, target_weights = self.tf_model.get_batch( {bucket_id: [(x, [])]}, bucket_id )

        # print "encoder_inputs, decoder_inputs, target_weights", encoder_inputs, decoder_inputs, target_weights

        # get output logits for the sentence
        _, _, output_logits = self.tf_model.step(self.tf_session, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)

        logging.debug("output_logits: %s" % repr(output_logits))

        # this is a greedy decoder - outputs are just argmaxes of output_logits.
        outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]

        # print "outputs", outputs

        preds = map (lambda o: self.inv_output_dict[o], outputs)
        logging.debug("preds: %s" % repr(preds))

        prolog_s = ''

        for p in preds:

            if p[0] == '_':
                continue # skip _EOS

            if len(prolog_s)>0:
                prolog_s += ', '
            prolog_s += p

        logging.debug('?- %s' % prolog_s)

        try:
            c = self.parser.parse_line_clause_body(prolog_s)
            logging.debug( "Parse result: %s" % c)

            self.prolog_rt.reset_actions()

            self.prolog_rt.search(c)

            abufs = self.prolog_rt.get_actions()

            # if we have multiple abufs, pick one at random

            if len(abufs)>0:

                abuf = random.choice(abufs)

                self.prolog_rt.execute_builtin_actions(abuf)

                self.db.commit()

                return abuf

        except PrologError as e:

            logging.error("*** ERROR: %s" % e)

        return None

    def test_module (self, module_name, trace=False):

        logging.info('running tests of module %s ...' % (module_name))

        gn = rdflib.Graph(identifier=CONTEXT_GRAPH_NAME)

        for nlpt in self.db.session.query(model.NLPTest).filter(model.NLPTest.module==module_name):

            # import pdb; pdb.set_trace()
        
            # test setup predicate for this module

            self.kb.remove((CURIN, None, None, gn))

            quads = [ ( CURIN, KB_PREFIX+u'user', TEST_USER, gn) ]

            self.kb.addN_resolve(quads)

            prolog_s = u'test_setup(\'%s\')' % (module_name)
            c = self.parser.parse_line_clause_body(prolog_s)

            self.prolog_rt.set_trace(trace)

            self.prolog_rt.reset_actions()
        
            solutions = self.prolog_rt.search(c)

            actions = self.prolog_rt.get_actions()
            for action in actions:
                self.prolog_rt.execute_builtin_actions(action)

            # extract test rounds, look up matching discourse_rounds, execute them

            clause = self.parser.parse_line_clause_body(nlpt.test_src)
            clause.location = nlpt.location
            logging.debug( "Parse result: %s (%s)" % (clause, clause.__class__))

            args = clause.body.args
            lang = args[0].name

            round_num = 0
            for ivr in args[1:]:

                if ivr.name != 'ivr':
                    raise PrologError ('nlp_test: ivr predicate args expected.')

                test_in = ''
                test_out = ''
                test_actions = []

                for e in ivr.args:

                    if e.name == 'in':
                        test_in = ' '.join(tokenize(e.args[0].s, lang))
                    elif e.name == 'out':
                        test_out = ' '.join(tokenize(e.args[0].s, lang))
                    elif e.name == 'action':
                        test_actions.append(e.args)
                    else:
                        raise PrologError (u'nlp_test: ivr predicate: unexpected arg: ' + unicode(e))
                   
                logging.info("nlp_test: %s round %d test_in     : %s" % (clause.location, round_num, test_in) )
                logging.info("nlp_test: %s round %d test_out    : %s" % (clause.location, round_num, test_out) )
                logging.info("nlp_test: %s round %d test_actions: %s" % (clause.location, round_num, test_actions) )

                # execute all matching clauses, collect actions

                # FIXME: nlp_test should probably let the user specify a user
                action_buffers = self.process_input (test_in, lang, TEST_USER, test_mode=True, trace=trace)

                # check actual actions vs expected ones
                matching_abuf = None
                for abuf in action_buffers:

                    logging.info("nlp_test: %s round %d %s" % (clause.location, round_num, repr(abuf)) )

                    # check utterance

                    actual_out = u''
                    utt_lang   = u'en'
                    for action in abuf['actions']:
                        p = action[0].name
                        if p == 'say':
                            utt_lang = unicode(action[1])
                            actual_out += u' ' + unicode(action[2])

                    if len(test_out) > 0:
                        if len(actual_out)>0:
                            actual_out = u' '.join(tokenize(actual_out, utt_lang))
                        if actual_out != test_out:
                            logging.info("nlp_test: %s round %d UTTERANCE MISMATCH." % (clause.location, round_num))
                            continue # no match

                    logging.info("nlp_test: %s round %d UTTERANCE MATCHED!" % (clause.location, round_num))

                    # check actions

                    if len(test_actions)>0:

                        # import pdb; pdb.set_trace()

                        # print repr(test_actions)

                        actions_matched = True
                        for action in test_actions:
                            for act in abuf['actions']:
                                # print "    check action match: %s vs %s" % (repr(action), repr(act))
                                if action == act:
                                    break
                            if action != act:
                                actions_matched = False
                                break

                        if not actions_matched:
                            logging.info("nlp_test: %s round %d ACTIONS MISMATCH." % (clause.location, round_num))
                            continue

                        logging.info("nlp_test: %s round %d ACTIONS MATCHED!" % (clause.location, round_num))

                    matching_abuf = abuf
                    break

                if not matching_abuf:
                    raise PrologError (u'nlp_test: %s round %d no matching abuf found.' % (clause.location, round_num))
               
                self.prolog_rt.execute_builtin_actions(matching_abuf)

                round_num += 1

        logging.info('running tests of module %s complete!' % (module_name))

    def run_tests_multi (self, module_names, run_trace=False):

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module (mn2, run_init=True, run_trace=run_trace)
                    self.test_module (mn2, run_trace)

            else:
                self.load_module (module_name, run_init=True, run_trace=run_trace)
                self.test_module (module_name, run_trace)


    def run_cronjobs (self, module_name, force=False):

        m = self.modules[module_name]
        if not hasattr(m, 'CRONJOBS'):
            return

        graph = self._module_graph_name(module_name)

        self.kb.register_graph(graph)

        for name, interval, f in getattr (m, 'CRONJOBS'):

            cronjob = self.session.query(model.Cronjob).filter(model.Cronjob.module==module_name, model.Cronjob.name==name).first()

            t = time.time()

            next_run = cronjob.last_run + interval

            if force or t > next_run:

                logging.debug ('running cronjob %s' %name)
                f (self.config, self.kb, graph)

                cronjob.last_run = t

    def run_cronjobs_multi (self, module_names, force, run_trace=False):

        for module_name in module_names:

            if module_name == 'all':

                for mn2 in self.all_modules:
                    self.load_module (mn2, run_init=True, run_trace=run_trace)
                    self.run_cronjobs (mn2, force=force)

            else:
                self.load_module (module_name, run_init=True, run_trace=run_trace)
                self.run_cronjobs (module_name, force=force)

        self.session.commit()

    def train (self, num_steps):

        self.setup_tf_model (False, False)
        self.nlp_model.train(num_steps)


    def dump_utterances (self, num_utterances, dictfn):

        dic = None
        if dictfn:
            dic = set()
            with codecs.open(dictfn, 'r', 'utf8') as dictf:
                for line in dictf:
                    parts = line.strip().split(';')
                    if len(parts) != 2:
                        continue
                    dic.add(parts[0])

        all_utterances = []

        for dr in self.session.query(model.DiscourseRound):

            if not dic:
                all_utterances.append(dr.inp)
            else:

                # is at least one word not covered by our dictionary?

                unk = False
                for t in tokenize(dr.inp):
                    if not t in dic:
                        # print u"unknown word: %s in %s" % (t, dr.inp)
                        unk = True
                        break
                if not unk:
                    continue

                all_utterances.append(dr.inp)

        utts = set()

        if num_utterances > 0:

            while (len(utts) < num_utterances):

                i = random.randrange(0, len(all_utterances))
                utts.add(all_utterances[i])

        else:
            for utt in all_utterances:
                utts.add(utt)
                
        for utt in utts:
            print utt