コード例 #1
0
    def legend(self, ax, xlabel='', ylabel=''):
        """Draw a legend showing the colormap on the given axes.
        """
        # Find extrema from normalization
        xlim = [self.norm[0].vmin, self.norm[0].vmax]
        ylim = [self.norm[1].vmin, self.norm[1].vmax]
        # Create spacings and mesh
        xx = zmath.spacing(xlim, num=self._LEGEND_DIV, scale=self.xscale)
        yy = zmath.spacing(ylim, num=self._LEGEND_DIV, scale=self.yscale)
        xx, yy = np.meshgrid(xx, yy)
        # Use the colormap to convert to RGB values
        cols = self.to_rgba(xx, yy)
        # Reshape the colors array appropriately ``(N,3)``
        cols = cols.reshape([cols.shape[0] * cols.shape[1], cols.shape[2]])
        # `pcolormesh` uses y-positions as rows, and x-pos as columns so use transpose
        im = ax.pcolormesh(xx.T, color=cols)
        # Ticks
        # -----
        # This method of using `pcolormesh` loses the x and y value data
        #     fake the limits/scaling by placing custom tick marks
        # Set x-ticks
        xticks = np.linspace(0, self._LEGEND_DIV - 1, self._LEGEND_NTICKS)
        xticklabels = zmath.spacing(xlim,
                                    num=self._LEGEND_NTICKS,
                                    scale=self.xscale)
        if self.xscale.startswith('log'):
            xticklabels = [zplot.strSciNot(tt, 0, 0) for tt in xticklabels]
        else:
            xticklabels = ["{:.2f}".format(tt) for tt in xticklabels]
        # Set y-ticks
        yticks = np.linspace(0, self._LEGEND_DIV - 1, self._LEGEND_NTICKS)
        yticklabels = zmath.spacing(ylim,
                                    num=self._LEGEND_NTICKS,
                                    scale=self.yscale)
        if self.yscale.startswith('log'):
            yticklabels = [zplot.strSciNot(tt, 0, 0) for tt in yticklabels]
        else:
            yticklabels = ["{:.2f}".format(tt) for tt in yticklabels]

        ax.set(xlabel=xlabel,
               ylabel=ylabel,
               xticks=xticks,
               yticks=yticks,
               xticklabels=xticklabels,
               yticklabels=yticklabels)

        return im
コード例 #2
0
def plot_hour_vs_day(vals,
                     station=None,
                     clabel='',
                     ax=None,
                     levels=None,
                     smooth=3,
                     upsample=2,
                     cmap=None):

    if ax is None:
        fig, ax = plt.subplots(figsize=[12, 4])

    if station is not None:
        _draw_station_title(ax, station)

    cmap = _def_temp_cmap(cmap)

    vave = np.mean(vals, axis=0)
    edges = [
        np.arange(1, 365 + 1).astype(float),
        np.arange(0, 24).astype(float)
    ]
    if levels is None:
        levels = zmath.spacing(vave / 5, integers=True, scale='lin') * 5

    mesh = np.meshgrid(*edges, indexing='ij')

    # pcm = ax.pcolormesh(vave.T)
    pcm, data = _draw_hist2d(ax,
                             mesh,
                             vals,
                             smooth=smooth,
                             upsample=upsample,
                             cmap=cmap)
    cbar = plt.colorbar(pcm, label=clabel)

    # ax.axhline(12, color='0.5', ls='--')
    ax.set_yticks(np.arange(0, 25, 6))

    *_, cc = kale.plot.draw_contour2d(ax,
                                      edges,
                                      vave,
                                      cmap=pcm.cmap.reversed(),
                                      levels=levels,
                                      smooth=smooth * 2,
                                      upsample=upsample / 4,
                                      pad=1,
                                      cbar=cbar)

    ax.set(xlim=[0, 365],
           xlabel='Day of Year',
           ylim=[0, 24],
           ylabel='Hour of Day')

    _draw_twiny_months(ax)

    return ax, data, cc
コード例 #3
0
def rad_proj_from_2d(path,
                     snap_num,
                     scatter_param='Density',
                     hist_param='Masses',
                     hist_dens=True,
                     extr=None,
                     nbins=20):
    bin_sigma = 3

    _params = ['Coordinates', 'Masses']
    params = [pp for pp in _params]
    if (scatter_param is not None) and (scatter_param not in _params):
        params.append(scatter_param)
    if (hist_param is not None) and (hist_param not in _params):
        params.append(hist_param)

    snap = lysis.readio.snapshot(path, snap_num=snap_num, pars=params)
    pos = snap['Coordinates']
    mass = snap['Masses']

    scat = None
    if scatter_param is not None:
        scat = snap[scatter_param]
    hist = None
    if hist_param is not None:
        hist = snap[hist_param]

    com = np.sum(pos * mass[:, np.newaxis], axis=0) / np.sum(mass)
    rads = np.linalg.norm(pos - com, axis=-1)
    if extr is None:
        extr = zmath.quantiles(rads, sigmas=[-bin_sigma, bin_sigma])

    edges = None
    if hist is not None:
        stat = 'sum' if hist_dens else 'mean'

        edges = zmath.spacing(extr, 'log', nbins + 1)
        hist, *_ = sp.stats.binned_statistic(rads,
                                             hist,
                                             statistic=stat,
                                             bins=edges)
        if hist_dens:
            da = np.diff(np.pi * edges**2)
            hist = hist / da

    return rads, scat, hist, edges
コード例 #4
0
def main():

    # Initialize MPI Parameters
    # -------------------------

    from mpi4py import MPI
    from illpy_lib.illcosmo import Illustris_Cosmology_TOS
    COSMO = Illustris_Cosmology_TOS()

    comm = MPI.COMM_WORLD
    rank = comm.rank
    size = comm.size
    # name = MPI.Get_processor_name()
    # stat = MPI.Status()

    if rank == 0:
        NAME = sys.argv[0]
        print(("\n%s\n%s\n%s" % (NAME, '=' * len(NAME), str(datetime.now()))))

    # Parse Arguments
    # ---------------
    args = _parseArguments()
    RUN = args.RUN
    VERBOSE = args.verbose
    if args.check: CHECK_EXISTS = True
    elif args.nocheck: CHECK_EXISTS = False

    # Create Radial Bins (in simulation units)
    radExtrema = np.array(
        RAD_EXTREMA) / COSMO.CONV_ILL_TO_SOL.DIST.value  # [pc] ==> [ill]
    radBins = zmath.spacing(radExtrema, num=RAD_BINS)

    # Master Process
    # --------------
    if rank == 0:
        print(("RUN           = %d  " % (RUN)))
        print(("VERSION       = %.2f" % (_VERSION)))
        print(("MPI COMM SIZE = %d  " % (size)))
        print("")
        print(("VERBOSE       = %s  " % (str(VERBOSE))))
        print(("CHECK_EXISTS  = %s  " % (str(CHECK_EXISTS))))
        print("")
        print(("RAD_BINS      = %d  " % (RAD_BINS)))
        print(("RAD_EXTREMA   = [%.2e, %.2e] [pc]" %
               (RAD_EXTREMA[0], RAD_EXTREMA[1])))
        print(("              = [%.2e, %.2e] [sim]" %
               (radExtrema[0], radExtrema[1])))
        beg_all = datetime.now()

        try:
            _runMaster(RUN, comm)
        except Exception as err:
            _mpiError(comm, err)

        # Check subhalo files to see if/what is missing
        checkSubhaloFiles(RUN, verbose=VERBOSE, version=_VERSION)

        end_all = datetime.now()
        print((" - - Total Duration '%s'" % (str(end_all - beg_all))))

    # Slave Processes
    # ---------------
    else:

        try:
            _runSlave(RUN, comm, radBins, verbose=True)
        except Exception as err:
            _mpiError(comm, err)

    return
コード例 #5
0
def subhaloRadialProfiles(run, snapNum, subhalo, radBins=None, nbins=NUM_RAD_BINS,
                          mostBound=None, verbose=True):
    """
    Construct binned, radial profiles of density for each particle species.

    Profiles for the velocity dispersion and gravitational potential are also constructed for
    all particle types together.

    Arguments
    ---------
       run       <int>    : illustris simulation run number {1, 3}
       snapNum   <int>    : illustris simulation snapshot number {1, 135}
       subhalo   <int>    : subhalo index number for target snapshot
       radBins   <flt>[N] : optional, right-edges of radial bins in simulation units
       nbins     <int>    : optional, numbers of bins to create if ``radBins`` is `None`
       mostBound <int>    : optional, ID number of the most-bound particle for this subhalo
       verbose   <bool>   : optional, print verbose output

    Returns
    -------
       radBins   <flt>[N]   : coordinates of right-edges of ``N`` radial bins
       posRef    <flt>[3]   : coordinates in simulation box of most-bound particle (used as C.O.M.)
       partTypes <int>[M]   : particle type numbers for ``M`` types, (``illpy_lib.constants.PARTICLE``)
       partNames <str>[M]   : particle type strings for each type
       numsBins  <int>[M, N] : binned number of particles for ``M`` particle types, ``N`` bins each
       massBins  <flt>[M, N] : binned radial mass profile
       densBins  <flt>[M, N] : binned mass density profile
       potsBins  <flt>[N]   : binned gravitational potential energy profile for all particles
       dispBins  <flt>[N]   : binned velocity dispersion profile for all particles

    """

    if verbose: print(" - - Profiler.subhaloRadialProfiles()")

    if verbose: print(" - - - Loading subhalo partile data")
    # Redirect output during this call
    with zio.StreamCapture():
        partData, partTypes = Subhalo.importSubhaloParticles(run, snapNum, subhalo, verbose=False)

    partNums = [pd['count'] for pd in partData]
    partNames = [PARTICLE.NAMES(pt) for pt in partTypes]
    numPartTypes = len(partNums)

    # Find the most-bound Particle
    #  ----------------------------

    posRef = None

    # If no particle ID is given, find it
    if (mostBound is None):
        # Get group catalog
        mostBound = Subhalo.importGroupCatalogData(
            run, snapNum, subhalos=subhalo, fields=[SUBHALO.MOST_BOUND])

    if (mostBound is None):
        warnStr  = "Could not find mostBound particle ID Number!"
        warnStr += "Run %d, Snap %d, Subhalo %d" % (run, snapNum, subhalo)
        warnings.warn(warnStr, RuntimeWarning)
        return None

    thisStr = "Run %d, Snap %d, Subhalo %d, Bound ID %d" % (run, snapNum, subhalo, mostBound)
    if verbose: print((" - - - - {:s} : Loaded {:s} particles".format(thisStr, str(partNums))))

    # Find the most-bound particle, store its position
    for pdat, pname in zip(partData, partNames):
        # Skip, if no particles of this type
        if (pdat['count'] == 0): continue
        inds = np.where(pdat[SNAPSHOT.IDS] == mostBound)[0]
        if (len(inds) == 1):
            if verbose: print((" - - - Found Most Bound Particle in '{:s}'".format(pname)))
            posRef = pdat[SNAPSHOT.POS][inds[0]]
            break

    # } pdat, pname

    # Set warning and return ``None`` if most-bound particle is not found
    if (posRef is None):
        warnStr = "Could not find most bound particle in snapshot! %s" % (thisStr)
        warnings.warn(warnStr, RuntimeWarning)
        return None

    mass = np.zeros(numPartTypes, dtype=object)
    rads = np.zeros(numPartTypes, dtype=object)
    pots = np.zeros(numPartTypes, dtype=object)
    disp = np.zeros(numPartTypes, dtype=object)
    radExtrema = None

    # Iterate over all particle types and their data
    #  ==============================================

    if verbose: print(" - - - Extracting and processing particle properties")
    for ii, (data, ptype) in enumerate(zip(partData, partTypes)):

        # Make sure the expected number of particles are found
        if (data['count'] != partNums[ii]):
            warnStr  = "%s" % (thisStr)
            warnStr += "Type '%s' count mismatch after loading!!  " % (partNames[ii])
            warnStr += "Expecting %d, Retrieved %d" % (partNums[ii], data['count'])
            warnings.warn(warnStr, RuntimeWarning)
            return None

        # Skip if this particle type has no elements
        #    use empty lists so that call to ``np.concatenate`` below works (ignored)
        if (data['count'] == 0):
            mass[ii] = []
            rads[ii] = []
            pots[ii] = []
            disp[ii] = []
            continue

        # Extract positions from snapshot, make sure reflections are nearest most-bound particle
        posn = reflectPos(data[SNAPSHOT.POS], center=posRef)

        # DarkMatter Particles all have the same mass, store that single value
        if (ptype == PARTICLE.DM): mass[ii] = [GET_ILLUSTRIS_DM_MASS(run)]
        else:                       mass[ii] = data[SNAPSHOT.MASS]

        # Convert positions to radii from ``posRef`` (most-bound particle), and find radial extrema
        rads[ii] = zmath.dist(posn, posRef)
        pots[ii] = data[SNAPSHOT.POT]
        disp[ii] = data[SNAPSHOT.SUBF_VDISP]
        radExtrema = zmath.minmax(rads[ii], prev=radExtrema, nonzero=True)

    # Create Radial Bins
    #  ------------------

    # Create radial bin spacings, these are the upper-bound radii
    if (radBins is None):
        radExtrema[0] = radExtrema[0]*0.99
        radExtrema[1] = radExtrema[1]*1.01
        radBins = zmath.spacing(radExtrema, scale='log', num=nbins)

    # Find average bin positions, and radial bin (shell) volumes
    numBins = len(radBins)
    binVols = np.zeros(numBins)
    for ii in range(len(radBins)):
        if (ii == 0): binVols[ii] = np.power(radBins[ii], 3.0)
        else:          binVols[ii] = np.power(radBins[ii], 3.0) - np.power(radBins[ii-1], 3.0)

    # Bin Properties for all Particle Types
    # -------------------------------------
    densBins = np.zeros([numPartTypes, numBins], dtype=DTYPE.SCALAR)    # Density
    massBins = np.zeros([numPartTypes, numBins], dtype=DTYPE.SCALAR)    # Mass
    numsBins = np.zeros([numPartTypes, numBins], dtype=DTYPE.INDEX)    # Count of particles

    # second dimension to store averages [0] and standard-deviations [1]
    potsBins = np.zeros([numBins, 2], dtype=DTYPE.SCALAR)               # Grav Potential Energy
    dispBins = np.zeros([numBins, 2], dtype=DTYPE.SCALAR)               # Velocity dispersion

    # Iterate over particle types
    if verbose: print(" - - - Binning properties by radii")
    for ii, (data, ptype) in enumerate(zip(partData, partTypes)):

        # Skip if this particle type has no elements
        if (data['count'] == 0): continue

        # Get the total mass in each bin
        numsBins[ii, :], massBins[ii, :] = zmath.histogram(rads[ii], radBins, weights=mass[ii],
                                                           edges='right', func='sum', stdev=False)

        # Divide by volume to get density
        densBins[ii, :] = massBins[ii, :]/binVols

    if verbose: print((" - - - - Binned {:s} particles".format(str(np.sum(numsBins, axis=1)))))

    # Consistency check on numbers of particles
    # -----------------------------------------
    #      The total number of particles ``numTot`` shouldn't necessarily be in bins.
    #      The expected number of particles ``numExp`` are those that are within the bounds of bins

    for ii in range(numPartTypes):

        numExp = np.size(np.where(rads[ii] <= radBins[-1])[0])
        numAct = np.sum(numsBins[ii])
        numTot = np.size(rads[ii])

        # If there is a discrepancy return ``None`` for error
        if (numExp != numAct):
            warnStr  = "%s\nType '%s' count mismatch after binning!" % (thisStr, partNames[ii])
            warnStr += "\nExpecting %d, Retrieved %d" % (numExp, numAct)
            warnings.warn(warnStr, RuntimeWarning)
            return None

        # If a noticeable number of particles are not binned, warn, but still continue
        elif (numAct < numTot-10 and numAct < 0.9*numTot):
            warnStr  = "%s : Type %s" % (thisStr, partNames[ii])
            warnStr += "\nTotal = %d, Expected = %d, Binned = %d" % (numTot, numExp, numAct)
            warnStr += "\nBin Extrema = %s" % (str(zmath.minmax(radBins)))
            warnStr += "\nRads = %s" % (str(rads[ii]))
            warnings.warn(warnStr, RuntimeWarning)
            raise RuntimeError("")

    # Convert list of arrays into 1D arrays of all elements
    rads = np.concatenate(rads)
    pots = np.concatenate(pots)
    disp = np.concatenate(disp)

    # Bin Grav Potentials
    counts, aves, stds = zmath.histogram(rads, radBins, weights=pots,
                                         edges='right', func='ave', stdev=True)
    potsBins[:, 0] = aves
    potsBins[:, 1] = stds

    # Bin Velocity Dispersion
    counts, aves, stds = zmath.histogram(rads, radBins, weights=disp,
                                         edges='right', func='ave', stdev=True)
    dispBins[:, 0] = aves
    dispBins[:, 1] = stds

    return radBins, posRef, mostBound, partTypes, partNames, \
        numsBins, massBins, densBins, potsBins, dispBins
コード例 #6
0
def plotScattering(sample, snap, mbhb, log, plotNames):
    """Illustrate the scattering calculation for a single, sample system.

    Performs calculation by calling the 'scattering()' method, just like in
    "MBHBinaryEvolution.py".

    Arguments
    ---------
    sample : int
        Target galaxy/merger number to examine (this is the number out of *all* binaries,
        not just the valid ones [included in ``mbhb.evolution``]).
    snap : int
        Illustris snapshot number {1, 135}.
    mbhb : `Binaries.MBHBinaries` object
    log : `logging.Logger` object
    plotNames : str
        Base name of plots.

    Returns
    -------
    plotNames : list of str
        Filenames of the plots created.

    """
    log.debug("plotScattering()")
    PLOT_A10 = True     # LC Occupancy
    PLOT_A11 = True     # Flux
    PLOT_A15 = True      # Flux vs. Separation
    PLOT_A02 = False     # Model Galaxy
    PLOT_A08 = False      # Dist Func

    from . import GM_Figures

    figNames = []

    # Initialization
    # --------------
    radialRange = np.array(mbhb.sets.RADIAL_RANGE_MODELS) * PC
    numSeps = mbhb.sets.PLOT_SCATTERING_SAMPLE_SEPS
    # Convert from `sample` number, of all binaries to index for valid (``mbhb.evolution``) ones
    val_inds = np.where(mbhb.valid)[0]
    valid_sample = np.where(val_inds == sample)[0]
    if valid_sample.size == 1:
        valid_sample = valid_sample[0]
    else:
        raise ValueError("`sample` '{}' returned '{}' from `val_inds`".format(sample, valid_sample))

    mstar = mbhb.galaxies.mstar

    log.debug(" - Sample subhalo %d, Snapshot %d" % (sample, snap))

    # Binary Properties (snapshot dependent)
    #    `evolution` class includes only valid binaries, so use `valid_sample`
    # m1 = np.max(mbhb.evolution.masses[valid_sample, snap])
    # m2 = np.min(mbhb.evolution.masses[valid_sample, snap])
    m1 = np.max(mbhb.initMasses[sample])
    m2 = np.min(mbhb.initMasses[sample])

    # Galaxy properties (snapshot independent)
    #    `galaxies` class includes *all* binaries, so use `sample` itself
    gals       = mbhb.galaxies
    eps        = gals.eps[sample]
    #     functions of energy
    rads       = gals.rads
    periods    = gals.perOrb[sample]
    dist_func   = gals.dist_func[sample]
    diffCoef   = gals.diffCoef[sample]
    j2Circs    = gals.j2Circ[sample]
    dnStarsAll = gals.dnStarsAll[sample]
    ndensStars = gals.densStars[sample]/mstar
    radHard    = gals.rads_hard[sample]

    numStarsAll = sp.integrate.cumtrapz(dnStarsAll[::-1], eps[::-1], initial=0.0)[::-1]
    loss_cone = Loss_Cone_Explicit(mbhb.sets, log)

    # Wrap the Scattering function (for convenience)
    def evalScattering(binSep):
        # retvals = scattering(m1, m2, binSep, rads, eps, periods, j2Circs, diffCoef, dist_func,
        #                      [sample], radHard, mbhb.sets)
        retvals = loss_cone.harden(
            m1, m2, binSep, rads, eps, periods, j2Circs, diffCoef, dist_func,
            [sample], radHard, mbhb.sets)

        radLC, j2LC, enrLC, dnStarsFLC, numStarsFLC, numStarsSSLC, \
            dfStarsFLC, dfStarsSSLC, fluxStarsFLC, fluxStarsSSLC, flux, dadt_lc = retvals

        return dnStarsFLC, numStarsFLC, dfStarsFLC, fluxStarsFLC, dfStarsSSLC, fluxStarsSSLC

    num_flc   = np.zeros(numSeps)
    flx_flc   = np.zeros(numSeps)
    flx_sslc  = np.zeros(numSeps)
    dadt_sslc = np.zeros(numSeps)
    dadt_flc  = np.zeros(numSeps)

    subPlotNames = zio.modify_filename(plotNames, prepend='stellar_scattering/')
    zio.check_path(subPlotNames)

    # Iterate over range of binary separations, plot profiles for each
    log.debug(" - Calculting scattering for %d binary separations" % (numSeps))
    flx_seps = zmath.spacing(radialRange, scale='log', num=numSeps)
    for ii, binSep in enumerate(tqdm.tqdm(flx_seps, desc="Calculating scattering")):
        dnStarsFLC, numStarsFLC, dfStarsFLC, fluxStarsFLC, dfStarsSSLC, fluxStarsSSLC = \
            evalScattering(binSep)

        hard_sslc = dadt_scattering(m1+m2, binSep, np.max(fluxStarsSSLC), mstar)
        hard_flc  = dadt_scattering(m1+m2, binSep, np.max(fluxStarsFLC),  mstar)

        eps_rad = zmath.spline(gals.rads, gals.eps[sample], log=True, pos=True, extrap=True)

        sepEner = eps_rad(binSep)

        # Plot Fig A10 - Loss-Cone Occupancy
        if PLOT_A10:
            fig = GM_Figures.figa10_lc_occupancy(
                gals.rads, eps, dnStarsAll, dnStarsFLC, numStarsAll, numStarsFLC,
                binr=binSep, bine=sepEner)
            fname1 = subPlotNames + "lcPipe_figa10-occ_%02d.png" % (ii)
            zplot.saveFigure(fig, fname1, verbose=False)   # , log=log)
            plt.close(fig)

        # Plot Fig A11 - loss-cone fluxes
        if PLOT_A11:
            fig = GM_Figures.figa11_lc_flux(
                eps, gals.rads, dfStarsFLC, dfStarsSSLC, fluxStarsFLC, fluxStarsSSLC,
                binr=binSep, bine=sepEner)
            fname2 = subPlotNames + "lcPipe_figa11-flx_%02d.png" % (ii)
            zplot.saveFigure(fig, fname2, verbose=False)    # , log=log)
            plt.close(fig)

        # Store values to arrays
        num_flc[ii]   = np.max(numStarsFLC)
        flx_flc[ii]   = np.max(fluxStarsFLC)
        flx_sslc[ii]  = np.max(fluxStarsSSLC)
        dadt_sslc[ii] = hard_sslc
        dadt_flc[ii]  = hard_flc

        # pbar.update(ii)

    # pbar.finish()

    if PLOT_A10:
        log.debug(" - - Saved FigA10 to (e.g.) '%s'" % (fname1))
    if PLOT_A11:
        log.debug(" - - Saved FigA11 to (e.g.) '%s'" % (fname2))

    # Plot Figs A15 - Scattering vs. Separations
    if PLOT_A15:
        log.debug(" - Plotting Fig15")
        fig = GM_Figures.figA15_flux_sep(flx_seps, flx_flc, flx_sslc, dadt_flc, dadt_sslc,
                                         sample, snap)
        fname = plotNames + "lcPipe_figa15-sep.png"
        zplot.saveFigure(fig, fname, verbose=False, log=log)
        plt.close(fig)
        figNames.append(fname)

    # Plot Figure A02 - Density/Mass Profiles
    if PLOT_A02:
        log.info(" - Plotting FigA02")
        dens  = [gals.densStars[sample], gals.densDM[sample]]
        mass  = [gals.massStars[sample], gals.massDM[sample], gals.massTot[sample]]
        names = ['Stars', 'DM', 'Total']
        vels  = [gals.vdisp_stars[sample]]

        fig = GM_Figures.figA02_ModelGalaxy(gals.rads, dens, mass, vels, names=names)
        fname = plotNames + "lcPipe_figa02-dens.png"
        zplot.saveFigure(fig, fname, verbose=False, log=log)
        plt.close(fig)
        figNames.append(fname)

    # Plot Figure A08 - Reconstructed Number Density
    if PLOT_A08:
        log.debug(" - Plotting FigA08")
        df_pot = zmath.spline(eps, dist_func, mono=True, pos=True, sort=True, log=True)
        dfErrs = np.zeros(np.size(eps))
        fig = GM_Figures.figA08_distFunc(eps, gals.rads, ndensStars, dist_func, dfErrs, df_pot, log,
                                         sample=sample)
        fname = plotNames + "lcPipe_figa08-distfunc.png"
        zplot.saveFigure(fig, fname, verbose=False, log=log)
        plt.close(fig)
        figNames.append(fname)

    return figNames
コード例 #7
0
def plot_grid(grid, grid_names, temps, valid, interp=None):
    import matplotlib.pyplot as plt
    import zcode.plot as zplot

    extr = zmath.minmax(temps, filter='>')
    smap = zplot.colormap(extr, 'viridis')

    # bads = valid & np.isclose(temps, 0.0)

    num = len(grid)
    fig, axes = plt.subplots(figsize=[14, 14], nrows=num, ncols=num)
    plt.subplots_adjust(hspace=0.4, wspace=0.4)

    def_idx = [-4, -4, 4, -4]

    for (ii, jj), ax in np.ndenumerate(axes):
        if ii < jj:
            ax.set_visible(False)
            continue

        ax.set(xscale='log', yscale='log')
        xx = grid[jj]
        if ii == jj:
            # print(grid_names[ii], zmath.minmax(grid[ii], filter='>'))
            # idx = list(range(num))
            # idx.pop(ii)
            # idx = tuple(idx)
            # vals = np.mean(temps, axis=idx)

            idx = [
                slice(None) if aa == ii else def_idx[aa] for aa in range(num)
            ]
            vals = temps[tuple(idx)]
            ax.plot(xx, vals, 'k-')

            if interp is not None:
                num_test = 10
                test = [
                    np.ones(num_test) * grid[aa][def_idx[aa]]
                    for aa in range(num)
                ]
                test[ii] = zmath.spacing(grid[ii], 'log', num_test)
                test_vals = [interp(tt) for tt in np.array(test).T]
                ax.plot(test[ii], test_vals, 'r--')

            # bad_vals = np.count_nonzero(bads, axis=idx)
            # tw = ax.twinx()
            # tw.plot(xx, bad_vals, 'r--')

        else:
            # print(ii, jj)
            # print("\t", ii, grid_names[ii], zmath.minmax(grid[ii], filter='>'))
            # print("\t", jj, grid_names[jj], zmath.minmax(grid[jj], filter='>'))
            # idx = [0, 1, 2, 3]
            # idx.pop(np.max([ii, jj]))
            # idx.pop(np.min([ii, jj]))
            # vals = np.mean(temps, axis=tuple(idx))

            # idx = [slice(None) if aa in [ii, jj] else num//2 for aa in range(num)]
            idx = [
                slice(None) if aa in [ii, jj] else def_idx[aa]
                for aa in range(num)
            ]
            vals = temps[tuple(idx)]
            if len(vals) == 0:
                continue

            yy = grid[ii]
            xx, yy = np.meshgrid(xx, yy, indexing='ij')
            ax.pcolor(xx, yy, vals, cmap=smap.cmap, norm=smap.norm)

            if np.count_nonzero(vals > 0.0) == 0:
                continue

            tit = "{:.1e}, {:.1e}".format(*zmath.minmax(vals, filter='>'))
            ax.set_title(tit, size=10)

            # bad_vals = np.count_nonzero(bads, axis=tuple(idx))
            # idx = (bad_vals > 0.0)
            # aa = xx[idx]
            # bb = yy[idx]
            # cc = bad_vals[idx]
            # ax.scatter(aa, bb, s=2*cc**2, color='0.5', alpha=0.5)
            # ax.scatter(aa, bb, s=cc**2, color='r')

            if interp is not None:
                for kk in range(10):
                    idx = (vals > 0.0)
                    x0 = 10**np.random.uniform(
                        *zmath.minmax(np.log10(xx[idx])))
                    y0 = 10**np.random.uniform(
                        *zmath.minmax(np.log10(yy[idx])))
                    # y0 = np.random.choice(yy[idx])

                    temp = [grid[ll][def_idx[ll]] for ll in range(num)]
                    temp[ii] = y0
                    temp[jj] = x0

                    if temp[2] >= temp[3]:
                        temp[2] = 3.1
                    iv = interp(temp)
                    if not np.isfinite(iv) or np.isclose(iv, 0.0):
                        print("\nBAD")
                        print(temp)
                        print(iv)

                        for kk in range(num):
                            if def_idx[kk] == 0:
                                temp[kk] = temp[kk] * 1.11
                            elif def_idx[kk] == -1:
                                temp[kk] = 0.99 * temp[kk]

                        iv = interp(temp)
                        print("\t", temp)
                        print("\t", iv)

                    cc = smap.to_rgba(iv)
                    ss = 20
                    ax.scatter(temp[jj], temp[ii], color='0.5', s=2 * ss)
                    ax.scatter(temp[jj], temp[ii], color=cc, s=ss)

        if ii == num - 1:
            ax.set_xlabel(grid_names[jj])
        if jj == 0 and ii != 0:
            ax.set_ylabel(grid_names[ii])

    return fig
コード例 #8
0
def plot2DHist(ax, xvals, yvals, hist,
               cax=None, cbax=None, cscale='log', cmap=None, smap=None, extrema=None,
               contours=None, clabel={}, ccolors=None, clw=2.5, fs=None, rasterized=True,
               scale='log', csmooth=None, cbg=True,
               title=None, labels=None, overlay=None, overlay_fmt="",
               cbar_kwargs={}, **kwargs):
    """Plot the given 2D histogram of data.

    Use with (e.g.) ``numpy.histogram2d``,

    Arguments
    ---------
    ax : ``matplotlib.axes.Axes`` object
        Axes object on which to plot.
    xvals : (N,) array of scalars
        Positions (edges) of x values, assumed to be the same for all rows of
        the input data `hist`.
    yvals : (M,) array of scalars
        Positions (edges) of y values, assumed to be the same for all columns of
        the input data `hist`.
    hist : (N,M) ndarray of scalars
        Grid of data-points to plot.
    cax : `matplotlib.axes.Axes` object
        Axes object on which to add a colorbar.
        See the `cax` parameter of `plt.colorbar`.
    cbax : `matplotlib.axes.Axes` object(s)
        Axes object from which to make space for a colorbar axis.
        See the `ax` parameter of `plt.colorbar`.
    cscale : str
        Scale to use for the colormap {'linear', 'log'}.
        Overridden if `smap` is provided.
    cmap : ``matplotlib.colors.Colormap`` object
        Matplotlib colormap to use for coloring histogram.
        Overridden if `smap` is provided.
    fs : int
        Fontsize specification.
    title : str or `None`
        Title to add to top of axes.
    smap : `matplotlib.cm.ScalarMappable` object or `None`
        A scalar-mappable object to use for colormaps, or `None` for one to be created.
    extrema : (2,) array_like of scalars
        Minimum and maximum values for colormap scaling.
    contours : (L,) array_like of scalar or `None`
        Histogram values at which to draw contours using the `plt.contour` `levels` argument.
    clabel : dict or `None`
        If `None`, no contours labels are drawn, otherwise labels are drawn on the contours,
        where additional labeling parameters can be passed in the `clabel` dictionary.

    labels : (2,) or (3,) array_like of strings
        The first two string are the 'x' and 'y' axis labels respectively.  If a third string is
        provided it is used as the colorbar label.
    overlay : (N,M) ndarray of int or `None`
        Number of elements in each bin if overlaid-text is desired.
    overlay_fmt : str
        Format specification on overlayed values, e.g. "02d" (no colon or brackets).

    Returns
    -------
    pcm : `matplotlib.collections.QuadMesh` object
        The resulting plotted object, returned by ``ax.pcolormesh``.
    smap : `matplotlib.cm.ScalarMappable` object
        Colormap and color-scaling information.  See: ``zcode.plot.plot_core.colormap``.
    cbar : colorbar or `None`
    cs : contours or `None`

    """
    cblab = 'Counts'
    xgrid, ygrid = np.meshgrid(xvals, yvals)
    hist = np.asarray(hist)
    if plot_core._scale_to_log_flag(cscale):
        filter = 'g'
    else:
        filter = None
    extrema = _set_extrema(extrema, hist, filter=filter)

    # Make sure the given `scale` is valid
    if np.size(scale) == 1:
        scale = [scale, scale]
    elif np.size(scale) != 2:
        raise ValueError("`scale` must be one or two scaling specifications!")

    if labels is not None:
        if np.size(labels) >= 2:
            ax.set_xlabel(labels[0], size=fs)
            ax.set_ylabel(labels[1], size=fs)
        if np.size(labels) > 2:
            cblab = labels[2]

    # Create scalar-mappable if needed
    if smap is None:
        smap = plot_core.colormap(extrema, cmap=cmap, scale=cscale)

    # Plot
    pcm = ax.pcolormesh(xgrid, ygrid, hist.T, norm=smap.norm, cmap=smap.cmap, linewidth=0,
                        rasterized=rasterized, vmin=smap.norm.vmin, vmax=smap.norm.vmax, **kwargs)
    pcm.set_edgecolor('face')

    # Add color bar
    # -------------
    cbar = None
    if cbax is not None or cax is not None:
        if cbax is not None:
            cbar = plt.colorbar(smap, cax=cbax, **cbar_kwargs)
        else:
            cbar = plt.colorbar(smap, ax=cax, **cbar_kwargs)

        if fs is not None:
            cbar.ax.tick_params(labelsize=fs)
            cbar.set_label(cblab, fontsize=fs)
        else:
            cbar.set_label(cblab)

        ticks = [smap.norm.vmin, smap.norm.vmax]
        ticks = zmath.spacing(ticks, cscale, integers=True)
        cbar.ax.yaxis.set_ticks(smap.norm(ticks), minor=True)

    if fs is not None:
        ax.tick_params(labelsize=fs)

    if title is not None:
        ax.set_title(title, size=fs)

    # Add overlay
    # -----------
    if overlay is not None:
        form = "{:%s}" % (overlay_fmt)
        overlay = np.asarray(overlay)  # .astype(int)
        # Make sure sizes are correct
        if overlay.shape != hist.shape:
            raise ValueError("shape of `overlay` ({}) must match `hist` ({})".format(
                overlay.shape, hist.shape))

        # Remember these are transposes
        for ii in range(xgrid.shape[1] - 1):
            for jj in range(xgrid.shape[0] - 1):
                if scale[0].startswith('log'):
                    xx = np.sqrt(xgrid[jj, ii] * xgrid[jj, ii+1])
                else:
                    xx = np.average([xgrid[jj, ii], xgrid[jj, ii+1]])
                if scale[1].startswith('log'):
                    yy = np.sqrt(ygrid[jj, ii] * ygrid[jj+1, ii])
                else:
                    yy = np.average([ygrid[jj, ii], ygrid[jj+1, ii]])
                ax.text(xx, yy, form.format(overlay.T[jj, ii]), ha='center', va='center',
                        fontsize=8, bbox=dict(facecolor='white', alpha=0.2, edgecolor='none'))

    # Add contour lines
    # -----------------
    cs = None
    if contours is not None:
        if isinstance(contours, bool) and contours:
            levels = None
        else:
            levels = np.array(contours)

        if csmooth is not None:
            data = sp.ndimage.filters.gaussian_filter(hist.T, csmooth)
        else:
            data = hist.T

        if cbg:
            ax.contour(xgrid, ygrid, data, colors='0.50', norm=smap.norm,
                       levels=levels, linewidths=2*clw, antialiased=True, zorder=10, alpha=0.4)

        if ccolors is None:
            _kw = {'cmap': smap.cmap, 'norm': smap.norm}
        else:
            _kw = {'colors': ccolors}
        cs = ax.contour(xgrid, ygrid, data, **_kw,
                        levels=levels, linewidths=clw, antialiased=True, zorder=11, alpha=0.8)
        if levels is not None and clabel is not None:
            clabel.setdefault('inline', True)
            if fs is not None:
                clabel.setdefault('fontsize', fs)
            plt.clabel(cs, **clabel, zorder=50)

    plot_core.set_lim(ax, 'x', data=xvals)
    plot_core.set_lim(ax, 'y', data=yvals)
    return pcm, smap, cbar, cs
コード例 #9
0
def plot2DHistProj(xvals, yvals, weights=None, statistic=None, bins=10, filter=None, extrema=None,
                   cumulative=None,
                   fig=None, xproj=True, yproj=True, hratio=0.7, wratio=0.7, pad=0.0, alpha=1.0,
                   cmap=None, smap=None, type='hist', scale_to_cbar=True,
                   fs=12, scale='log', histScale='log', labels=None, cbar=True,
                   overlay=None, overlay_fmt=None,
                   left=_LEFT, bottom=_BOTTOM, right=_RIGHT, top=_TOP, lo=None, hi=None,
                   overall=False, overall_bins=20, overall_wide=False, overall_cumulative=False):
    """Plot a 2D histogram with projections of one or both axes.

    Arguments
    ---------
    xvals : (N,) array_like,
        Values corresponding to the x-points of the given data
    yvals : (N,) array_like,
        Values corresponding to the y-points of the given data
    weights : (N,) array_like or `None`,
        Weights used to create histograms.  If `None`, then counts are used.
    statistic : str or `None`,
        Type of statistic to be calculated, passed to ``scipy.stats.binned_statistic``.
        e.g. {'count', 'sum', 'mean'}.
        If `None`, then either 'sum' or 'count' is used depending on if `weights` are
        provieded or not.
    bins : int or [int, int] or array_like or [array, array],
        Specification for bin sizes.  integer values are treated as the number of bins to use,
        while arrays are used as the bin edges themselves.  If a tuple of two values is given, it
        is assumed that the first is for the x-axis and the second for the y-axis.
    filter : str or `None`, or [2,] tuple of str or `None`, or [3,] tubple of str or `None`
        String specifying how to filter the input `data` relative to zero.
        If this is a single value, it is applies to both `xvals` and `yvals`.
        If this is a tuple/list of two values, they correspond to `xvals` and `yvals` respectively.
        If `weights` are provided, the tuple/list should have three values.
    extrema :
    cumulative :
    fig : ``matplotlib.figure.figure``,
        Figure instance to which axes are added for plotting.  One is created if not given.
    xproj : bool,
        Whether to also plot the projection of the x-axis (i.e. histogram ignoring y-values).
    yproj : bool,
        Whether to also plot the projection of the y-axis (i.e. histogram ignoring x-values).
    hratio : float,
        Fraction of the total available height-space to use for the primary axes object (2D hist)
    wratio : float,
        Fraction of the total available width-space to use for the primary axes object (2D hist)
    pad : float,
        Padding between central axis and the projected ones.
    cmap : ``matplotlib.colors.Colormap`` object
        Matplotlib colormap to use for coloring histogram.
        Overridden if `smap` is provided.
    smap : `matplotlib.cm.ScalarMappable` object or `None`
        A scalar-mappable object to use for colormaps, or `None` for one to be created.
    type : str, {'hist', 'scatter'}
        What type of plot should be in the center, a 2D Histogram or a scatter-plot.
    scale_to_cbar :
    fs : int,
        Font-size
    scale : str or [str, str],
        Specification for the axes scaling {'log','lin'}.  If two values are given, the first is
        used for the x-axis and the second for the y-axis.
    histScale : str,
        Scaling to use for the histograms {'log','lin'}-- the color scale on the 2D histogram,
        or the Counts axis on the 1D histograms.
    labels : (2,) str
    cbar : bool,
        Add a colorbar.
    overlay : str or 'None', if str {'counts', 'values'}
        Print a str on each bin writing,
        'counts' - the number of values included in that bin, or
        'values' - the value of the bin itself.
    overlay_fmt : str or 'None'
        Format specification on overlayed values, e.g. "02d" (no colon or brackets).
    left : float {0.0, 1.0}
        Location of the left edge of axes relative to the figure.
    bottom : float {0.0, 1.0}
        Location of the bottom edge of axes relative to the figure.
    right : float {0.0, 1.0}
        Location of the right edge of axes relative to the figure.
    top : float {0.0, 1.0}
        Location of the top edge of axes relative to the figure.
    lo : scalar or 'None'
        When autocalculating `extrema`, ignore histogram entries below this value.
    hi : scalar or 'None'
        When autocalculating `extrema`, ignore histogram entries above this value.
    overall :
    overall_bins
    overall_wide
    overall_cumulative

    Returns
    -------
    fig : matplotlib.figure.Figure
        Figure object containing plots.

    """
    # Make sure shapes of input arrays are valid
    if np.shape(xvals) != np.shape(yvals):
        raise ValueError("Shape of `xvals` ({}) must match `yvals` ({}).".format(
            np.shape(xvals), np.shape(yvals)))
    if weights is not None and np.shape(weights) != np.shape(xvals):
        raise ValueError("Shape of `weights` ({}) must match `xvals` and `yvals` ({}).".format(
            np.shape(weights), np.shape(xvals)))

    if overlay is not None:
        if not (overlay.startswith('val') or overlay.startswith('count')):
            raise ValueError("`overlay` = '{}', must be {'values', 'count'}".format(overlay))

    # Make sure the given `scale` is valid
    if np.size(scale) == 1:
        scale = [scale, scale]
    elif np.size(scale) != 2:
        raise ValueError("`scale` must be one or two scaling specifications!")

    # Check the `labels`
    if labels is None:
        labels = ['', '', '']
    elif np.size(labels) == 2:
        labels = [labels[0], labels[1], '']

    if np.size(labels) != 3:
        raise ValueError("`labels` = '{}' is invalid.".format(labels))

    # Make sure scale strings are matplotlib-compliant
    scale = [plot_core._clean_scale(sc) for sc in scale]

    # Determine type of central plot
    if type.startswith('hist'):
        type_hist = True
    elif type.startswith('scat'):
        type_hist = False
        cblabel = str(labels[2])
        labels[2] = 'Count'
    else:
        raise ValueError("`type` = '{}', must be either 'hist', or 'scatter'.".format(type))

    # Infer default statistic
    if statistic is None:
        if weights is None: statistic = 'count'
        else:               statistic = 'sum'

    if filter is None and histScale.startswith('log'):
        filter = 'g'

    # Filter input data
    if filter is not None:
        # Make sure `filter` is an iterable pair
        # if weights is None:
        #     num = 2
        # else:
        #     num = 3

        if not np.iterable(filter):
            filter = 3*[filter]
        elif len(filter) == 1:
            filter = 3*[filter[0]]

        # if len(filter) != num:
        #     raise ValueError("If `weights` are provided, number of `filter` values must match.")

        # Filter `xvals`
        if filter[0] is not None:
            inds = zmath.comparison_filter(xvals, filter[0], inds=True)
            xvals = xvals[inds]
            yvals = yvals[inds]
            if weights is not None:
                weights = weights[inds]
        # Filter `yvals`
        if filter[1] is not None:
            inds = zmath.comparison_filter(yvals, filter[1], inds=True)
            xvals = xvals[inds]
            yvals = yvals[inds]
            if weights is not None:
                weights = weights[inds]

        if weights is not None and filter[2] is not None:
            inds = zmath.comparison_filter(yvals, filter[2], inds=True)
            xvals = xvals[inds]
            yvals = yvals[inds]
            weights = weights[inds]

    # Create and initializae figure and axes
    fig, prax, xpax, ypax, cbax, ovax = _constructFigure(
        fig, xproj, yproj, overall, overall_wide, hratio, wratio, pad,
        scale, histScale, labels, cbar,
        left, bottom, right, top, fs=fs)

    # Create bins
    # -----------
    #     `bins` is a single scalar value -- apply to both
    if np.isscalar(bins):
        xbins = bins
        ybins = bins
    else:
        #     `bins` is a pair of bin specifications, separate and apply
        if len(bins) == 2:
            xbins = bins[0]
            ybins = bins[1]
        #     `bins` is a single array -- apply to both
        elif len(bins) > 2:
            xbins = bins
            ybins = bins
        #     unrecognized option -- error
        else:
            raise ValueError("Unrecognized shape of ``bins`` = %s" % (str(np.shape(bins))))

    # If a number of bins is given, create an appropriate spacing
    if np.ndim(xbins) == 0:
        xbins = zmath.spacing(xvals, num=xbins+1, scale=scale[0])

    if np.ndim(ybins) == 0:
        ybins = zmath.spacing(yvals, num=ybins+1, scale=scale[1])

    # Make sure bins look okay
    for arr, name in zip([xbins, ybins], ['xbins', 'ybins']):
        delta = np.diff(arr)
        if np.any(~np.isfinite(delta) | (delta == 0.0)):
            raise ValueError("Error constructing `{}` = {}, delta = {}".format(name, arr, delta))

    # Calculate Histograms
    # --------------------
    #    2D
    try:
        hist_2d, xedges_2d, yedges_2d, binnums_2d = sp.stats.binned_statistic_2d(
            xvals, yvals, weights, statistic=statistic, bins=[xbins, ybins], expand_binnumbers=True)
        hist_2d = np.nan_to_num(hist_2d)
        #    X-projection (ignore Y)
        hist_xp, edges_xp, bins_xp = sp.stats.binned_statistic(
            xvals, weights, statistic=statistic, bins=xbins)
        #    Y-projection (ignore X)
        hist_yp, edges_yp, bins_yp = sp.stats.binned_statistic(
            yvals, weights, statistic=statistic, bins=ybins)
    except:
        hist_2d, xedges_2d, yedges_2d, binnums_2d = sp.stats.binned_statistic_2d(
            xvals, yvals, weights, statistic=statistic, bins=[xbins, ybins])
        hist_2d = np.nan_to_num(hist_2d)
        #    X-projection (ignore Y)
        hist_xp, edges_xp, bins_xp = sp.stats.binned_statistic(
            xvals, weights, statistic=statistic, bins=xbins)
        #    Y-projection (ignore X)
        hist_yp, edges_yp, bins_yp = sp.stats.binned_statistic(
            yvals, weights, statistic=statistic, bins=ybins)

    if cumulative is not None:
        hist_2d = _cumulative_stat2d(
            weights, hist_2d.shape, binnums_2d, statistic, cumulative)
        hist_xp = _cumulative_stat1d(
            weights, hist_xp.size, bins_xp, statistic, cumulative[0])
        hist_yp = _cumulative_stat1d(
            weights, hist_yp.size, bins_yp, statistic, cumulative[1])

    # Calculate Extrema - Preserve input extrema if given, otherwise calculate
    extrema = _set_extrema(extrema, [hist_2d, hist_xp, hist_yp], filter=filter[2], lo=lo, hi=hi)
    # Create scalar-mappable if needed
    if smap is None:
        smap = plot_core.colormap(extrema, cmap=cmap, scale=histScale)

    # Plot Histograms and Projections
    # -------------------------------
    # Plot 2D Histogram
    if type_hist:
        overlay_values = None
        # If we should overlay strings labeling the num values in each bin, calculate those `counts`
        if overlay is not None:
            # Overlay the values themselves
            if overlay.startswith('val'):
                overlay_values = hist_2d
                if overlay_fmt is None:
                    overlay_fmt = ''
            # Get the 'counts' to overlay on plot
            else:
                if overlay_fmt is None:
                    overlay_fmt = 'd'
                try:
                    overlay_values, xedges_2d, yedges_2d, binnums = sp.stats.binned_statistic_2d(
                        xvals, yvals, weights, statistic='count', bins=[xbins, ybins],
                        expand_binnumbers=True)
                except:
                    overlay_values, xedges_2d, yedges_2d, binnums = sp.stats.binned_statistic_2d(
                        xvals, yvals, weights, statistic='count', bins=[xbins, ybins])

                if cumulative is not None:
                    overlay_values = _cumulative_stat2d(
                        np.ones_like(xvals), overlay_values.shape, binnums, 'count', cumulative)

                overlay_values = overlay_values.astype(int)

        pcm, smap, cbar, cs = plot2DHist(prax, xedges_2d, yedges_2d, hist_2d, cscale=histScale,
                                         cbax=cbax, labels=labels, cmap=cmap, smap=smap,
                                         extrema=extrema, fs=fs, scale=scale,
                                         overlay=overlay_values, overlay_fmt=overlay_fmt)

        # Colors
        # X-projection
        if xpax:
            colhist_xp = np.array(hist_xp)
            # Enforce positive values for colors in log-plots.
            if smap.log:
                tmin, tmax = zmath.minmax(colhist_xp, filter='g')
                colhist_xp = np.maximum(colhist_xp, tmin)
            colors_xp = smap.to_rgba(colhist_xp)

        if ypax:
            colhist_yp = np.array(hist_yp)
            # Enforce positive values for colors in log-plots.
            if smap.log:
                tmin, tmax = zmath.minmax(colhist_yp, filter='g')
                colhist_xp = np.maximum(colhist_yp, tmin)
            colors_yp = smap.to_rgba(colhist_yp)

        # colors_yp = smap.to_rgba(hist_yp)

    # Scatter Plot
    else:
        colors = smap.to_rgba(weights)
        prax.scatter(xvals, yvals, c=colors, alpha=alpha)

        if cbar:
            cbar = plt.colorbar(smap, cax=cbax)
            cbar.set_label(cblabel, fontsize=fs)
            cbar.ax.tick_params(labelsize=fs)

        # Make projection colors all grey
        colors_xp = '0.8'
        colors_yp = '0.8'

    hist_log = plot_core._scale_to_log_flag(histScale)

    # Plot projection of the x-axis (i.e. ignore 'y')
    if xpax:
        islog = scale[0].startswith('log')

        xpax.bar(edges_xp[:-1], hist_xp, color=colors_xp, log=islog, width=np.diff(edges_xp),
                 alpha=_BAR_ALPHA)
        # set tick-labels to the top
        plt.setp(xpax.get_yticklabels(), fontsize=fs)
        xpax.xaxis.tick_top()
        # set bounds to bin edges
        plot_core.set_lim(xpax, 'x', data=xedges_2d)
        # Set axes limits to match those of colorbar
        if scale_to_cbar:
            # extrema_y = [zmath.floor_log(extrema[0]), zmath.ceil_log(extrema[1])]
            round = 0
            # if hist_log: round = -1
            extrema_y = zmath.minmax(extrema, round=round)
            xpax.set_ylim(extrema_y)

    # Plot projection of the y-axis (i.e. ignore 'x')
    if ypax:
        ypax.barh(edges_yp[:-1], hist_yp, color=colors_yp, log=hist_log, height=np.diff(edges_yp),
                  alpha=_BAR_ALPHA)
        # set tick-labels to the top
        plt.setp(ypax.get_yticklabels(), fontsize=fs, rotation=90)
        ypax.yaxis.tick_right()
        # set bounds to bin edges
        plot_core.set_lim(ypax, 'y', data=yedges_2d)
        try:
            ypax.locator_params(axis='x', tight=True, nbins=4)
        except:
            ypax.locator_params(axis='x', tight=True)

        # Set axes limits to match those of colorbar
        if scale_to_cbar:
            round = 0
            # if hist_log: round = -1
            extrema_x = zmath.minmax(extrema, round=round)
            ypax.set_xlim(extrema_x)

    # Plot Overall Histogram of values
    if overall:
        ov_bins = zmath.spacing(weights, num=overall_bins)
        bin_centers = zmath.midpoints(ov_bins, log=hist_log)
        nums, bins, patches = ovax.hist(weights, ov_bins, log=hist_log, facecolor='0.5', edgecolor='k')
        for pp, cent in zip(patches, bin_centers):
            pp.set_facecolor(smap.to_rgba(cent))

        # Add cumulative distribution
        if overall_cumulative:
            cum_sum = np.cumsum(nums)
            ovax.plot(bin_centers, cum_sum, 'k--')

    prax.set(xlim=zmath.minmax(xedges_2d), ylim=zmath.minmax(yedges_2d))

    return fig