def cov(list_x, list_y): sum_of = 0 for i in range(0, int(zcount.count(list_x))): sum_of += ((list_x[i] - zmean.mean(list_x)) * (list_y[i] - zmean.mean(list_y))) covar = sum_of / (zcount.count(list_x) - 1) return covar
def mean(list_in) -> float: if zcount.count(list_in) > 0: return sum(list_in) / zcount.count(list_in) else: print('data set empty')
def median(list_in) -> float: median_index = int(zcount.count(list_in) // 2) list_in.sort() if zcount.count(list_in) % 2 == 0: return list_in[median_index] + list_in[median_index - 1] / 2 return list_in[median_index]
def stderr(list_in) -> float: return zstddev.stddev(list_in)/ math.sqrt(zcount.count(list_in))
def variance(list_in) -> float: amt_of_nums = zcount.count(list_in) mean = zmean.mean(list_in) sqaure_dev = [(x - mean) ** 2 for x in list_in] return sum(sqaure_dev)/amt_of_nums
f3 = open( '/Users/alfonso/PycharmProjects/pythonBasicStats/python-basic-stats-agonzalez1216/dataThree.csv', mode='r') def create_dictionaries(file_dict): ret_x_list = list() ret_y_list = list() for row in file_dict: ret_x_list.append(float(row['x'])) ret_y_list.append(float(row['y'])) return ret_x_list, ret_y_list file0_dict = csv.DictReader(f0) file1_dict = csv.DictReader(f1) file2_dict = csv.DictReader(f2) file3_dict = csv.DictReader(f3) f0x_values, f0y_values = create_dictionaries(file0_dict) f0x_count = zcount.count(f0x_values) # print(f0x_values) # print(f0x_count) # print(zmean.mean(f0x_values)) # print(zmedian.median(f0x_values)) # print(zvariance.variance(f0x_values)) # print(zstddev.stddev(f0x_values)) # print(zstderr.stderr(f0x_values)) # print(zmode.mode(f0x_values)) print(zcorr.corr(f0x_values, f0y_values))