コード例 #1
0
ファイル: test_ipw.py プロジェクト: sunny1205124/zEpid
 def test_error_conditional(self, sdata):
     sipw = StochasticIPTW(sdata.dropna(), treatment='art', outcome='dead')
     sipw.treatment_model(
         model=
         'male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0',
         print_results=False)
     with pytest.raises(ValueError):
         sipw.fit(p=[0.8, 0.1, 0.1],
                  conditional=["df['male']==1", "df['male']==0"])
コード例 #2
0
    def test_cond_treatment_continuous(self, cdata):
        r_pred = 1246.4285662061
        sipw = StochasticIPTW(cdata.dropna(), treatment='art', outcome='cd4_wk45')
        sipw.treatment_model(model='male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0',
                             print_results=False)
        sipw.fit(p=[0.75, 0.90], conditional=["df['male']==1", "df['male']==0"])
        r = sipw.marginal_outcome

        npt.assert_allclose(r_pred, r, atol=1e-5)
コード例 #3
0
    def test_cond_treatment(self, sdata):
        r_pred = 0.117340102
        sipw = StochasticIPTW(sdata.dropna(), treatment='art', outcome='dead')
        sipw.treatment_model(model='male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0',
                             print_results=False)
        sipw.fit(p=[0.75, 0.90], conditional=["df['male']==1", "df['male']==0"])
        r = sipw.marginal_outcome

        npt.assert_allclose(r_pred, r, atol=1e-7)
コード例 #4
0
    def test_uncond_treatment_continuous(self, cdata):
        r_pred = 1249.4477406809

        sipw = StochasticIPTW(cdata.dropna(), treatment='art', outcome='cd4_wk45')
        sipw.treatment_model(model='male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0',
                             print_results=False)
        sipw.fit(p=0.8)
        r = sipw.marginal_outcome

        npt.assert_allclose(r_pred, r, atol=1e-5)
コード例 #5
0
    def test_uncond_treatment(self, sdata):
        r_pred = 0.1165162207

        sipw = StochasticIPTW(sdata.dropna(), treatment='art', outcome='dead')
        sipw.treatment_model(model='male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0',
                             print_results=False)
        sipw.fit(p=0.8)
        r = sipw.marginal_outcome

        npt.assert_allclose(r_pred, r, atol=1e-7)
コード例 #6
0
    def test_match_iptw_continuous(self, cdata):
        model = 'male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0'
        cdata = cdata.dropna().copy()

        # Estimating Marginal Structural Model
        ipt = IPTW(cdata, treatment='art', outcome='cd4_wk45')
        ipt.treatment_model(model_denominator=model, stabilized=False, print_results=False)
        ipt.marginal_structural_model('art')
        ipt.fit()

        # Estimating 'Stochastic Treatment'
        sipw = StochasticIPTW(cdata, treatment='art', outcome='cd4_wk45')
        sipw.treatment_model(model=model, print_results=False)
        sipw.fit(p=1.0)
        r_all = sipw.marginal_outcome
        sipw.fit(p=0.0)
        r_non = sipw.marginal_outcome

        npt.assert_allclose(ipt.average_treatment_effect['ATE'][1], r_all - r_non, atol=1e-4)
コード例 #7
0
    def test_match_iptw(self, sdata):
        model = 'male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0'
        sdata = sdata.dropna().copy()

        # Estimating Marginal Structural Model
        ipt = IPTW(sdata, treatment='art', outcome='dead')
        ipt.treatment_model(model_denominator=model, stabilized=False, print_results=False)
        ipt.marginal_structural_model('art')
        ipt.fit()

        # Estimating 'Stochastic Treatment'
        sipw = StochasticIPTW(sdata, treatment='art', outcome='dead')
        sipw.treatment_model(model=model, print_results=False)
        sipw.fit(p=1.0)
        r_all = sipw.marginal_outcome
        sipw.fit(p=0.0)
        r_non = sipw.marginal_outcome

        npt.assert_allclose(ipt.risk_difference['RD'][1], r_all - r_non, atol=1e-7)
コード例 #8
0
    def test_match_iptw_continuous(self, cdata):
        model = 'male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0'
        cdata = cdata.dropna().copy()

        # Estimating Marginal Structural Model
        ipt = IPTW(cdata, treatment='art', stabilized=False)
        ipt.regression_models(model)
        ipt.fit()
        cdata['iptw'] = ipt.Weight
        ind = sm.cov_struct.Independence()
        f = sm.families.family.Gaussian()
        linrisk = smf.gee('cd4_wk45 ~ art', cdata['id'], cdata, cov_struct=ind, family=f, weights=cdata['iptw']).fit()

        # Estimating 'Stochastic Treatment'
        sipw = StochasticIPTW(cdata, treatment='art', outcome='cd4_wk45')
        sipw.treatment_model(model='male + age0 + age_rs1 + age_rs2 + cd40 + cd4_rs1 + cd4_rs2 + dvl0',
                             print_results=False)
        sipw.fit(p=1.0)
        r_all = sipw.marginal_outcome
        sipw.fit(p=0.0)
        r_non = sipw.marginal_outcome

        npt.assert_allclose(linrisk.params[1], r_all - r_non, atol=1e-4)