class TestZern(unittest.TestCase): def setUp(self): self.pupil = RZern(4) self.max_enorm = 1e-9 self.max_ip_err = 5e-2 def test_ntab(self): self.assertTrue(self.pupil.ntab.size == 15) expect = np.array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4]) self.assertTrue(norm(self.pupil.ntab - expect) < self.max_enorm) def test_mtab(self): self.assertTrue(self.pupil.mtab.size == 15) expect = np.array([0, 1, -1, 0, -2, 2, -1, 1, -3, 3, 0, 2, -2, 4, -4]) self.assertTrue(norm(self.pupil.mtab - expect) < self.max_enorm) def test_rhotab(self): expect = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13.416407864999, 12.649110640674, 12.649110640674, 3.1622776601684, 3.1622776601684, 0, 0, 0, 0, 0, 0, 8.4852813742386, 8.4852813742386, 2.8284271247462, 2.8284271247462, 0, 0, 0, 0, 0, 0, 0, 0, 3.4641016151378, 2.4494897427832, 2.4494897427832, 0, 0, 0, 0, -13.416407864999, -9.4868329805051, -9.4868329805051, 0, 0, 0, 2, 2, 0, 0, 0, -5.6568542494924, -5.6568542494924, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1.7320508075689, 0, 0, 0, 0, 0, 0, 2.2360679774998, 0, 0, 0, 0 ] for c, v in enumerate(expect): i, j = c % 15, c // 15 err = abs(self.pupil.coefnorm[i]*self.pupil.rhotab[i, j] - v) self.assertTrue(err < self.max_enorm) def test_Rnm(self): inrho = [ 0.19343375193909, 0.75442458148825, 0.34626071666477, 0.41862541430271, 0.15571983035489, 0.81900058392684, 0.62492352784628, 0.73856042161065, 0.80511242070695, 0.067222657563179, 0.95079031650557, 0.49757701102216, 0.75514590470052, 0.74240507067694, 0.83112957571011, 0.1565018467502, 0.45730872055141, 0.61810049609438, 0.93218335504705, 0.83508823555935, 0.89542351634235, 0.58251852466803, 0.58274680636179, 0.85492593896995, 0.034865700047931, 0.8854200954848, 0.40773081135598, 0.036382030447832, 0.74614794273772, 0.15482877075111 ] out3 = [ -1.6024358463019, 0.2395649672106, -1.3167172040235, -1.1249765690963, -1.6480509660176, 0.59153676922049, -0.37921722803669, 0.157517884017, 0.5134006785331, -1.716396928352, 1.3995047634699, -0.87439854650643, 0.24333698669463, 0.177241760149, 0.66086873705921, -1.6472051624093, -1.0075988516153, -0.40859694027142, 1.2781350494377, 0.68371791511127, 1.0454079255648, -0.55658471812649, -0.55566323680867, 0.79985538570113, -1.7278397866178, 0.98369658989472, -1.1561632626913, -1.7274655420545, 0.19654187580572, -1.6490095429101 ] out4 = [ 0.091651618055082, 1.3941428842409, 0.29368520752156, 0.42926631070763, 0.0593968575795, 1.6430245322286, 0.95659779790408, 1.3361268353382, 1.5877739726481, 0.011068964146113, 2.214344179944, 0.60645172969723, 1.3968101047969, 1.3500737219024, 1.6920496368403, 0.059994931046482, 0.51226489069861, 0.93582320415359, 2.1285228321212, 1.7082064455855, 1.9639599046646, 0.83118004289954, 0.83183162858811, 1.7903280385894, 0.0029776414702216, 1.9203234007362, 0.4072139881838, 0.0032422723387354, 1.3637209645609, 0.058719041358534 ] out10 = [ 1.7528544047959, -1.0538684824995, 0.82035094947331, 0.29691883664534, 1.9186268081509, -0.72681628778909, -0.95725432162119, -1.0902934593531, -0.82334230297547, 2.1757147314369, 1.0717625678433, -0.2632155912034, -1.0518319661711, -1.082911351763, -0.62973545308711, 1.915510691432, 0.017056106891689, -0.93137658244662, 0.7084189870086, -0.59538643046011, 0.10384045987001, -0.7716820983231, -0.77282798892389, -0.40275090649042, 2.2197785892442, -0.036158358505776, 0.37645712628727, 2.2183328268091, -1.0748457792076, 1.9221603389389 ] out13 = [ 0.0044271987866637, 1.0243852641201, 0.0454582689999, 0.09711858840943, 0.0018594122493614, 1.4227770316249, 0.48228916269284, 0.9409014176698, 1.3286974659506, 6.4574746661877e-05, 2.5842766270514, 0.19383902995264, 1.0283086425533, 0.96064675024684, 1.5089503417078, 0.0018970460208737, 0.13830501642735, 0.4615687191036, 2.3878408401262, 1.5379048343826, 2.0328904888789, 0.36411532970706, 0.3646864342091, 1.6893279835042, 4.6729760834851e-06, 1.9435579666012, 0.08739651710603, 5.540484342947e-06, 0.98016633844227, 0.0018172164647309 ] outi = [3, 4, 10, 13] outl = [out3, out4, out10, out13] for c, i in enumerate(outi): for j in range(len(inrho)): a = self.pupil.coefnorm[i]*self.pupil.Rnm(i, inrho[j]) b = outl[c][j] err = abs(a - b) self.assertTrue(err < self.max_enorm) def test_Zj(self): rho = [ 0, 0.11111111111111, 0.22222222222222, 0.33333333333333, 0.44444444444444, 0.55555555555556, 0.66666666666667, 0.77777777777778, 0.88888888888889, 1 ] theta = [ 0, 0.69813170079773, 1.3962634015955, 2.0943951023932, 2.7925268031909, 3.4906585039887, 4.1887902047864, 4.8869219055841, 5.5850536063819, 6.2831853071796 ] c = [ 0.54031374569774, 0.99075098653197, 0.98937811670199, -0.68884118291816, -0.85683760660055, 0.048390017659746, -0.66485340286758, 1.4527419609898, 1.3798457521444, 0.095136418969694, -0.42712706398395, 0.51080780984162, -0.65627362438046, -0.12501677594865, -0.53046670030726 ] z = [ 0.77833652275983, 0.085651919598506, -0.53679726827283, -0.98349975448282, -1.1477173085559, -0.92148475591224, -0.19560997786786, 1.1403260883655, 3.1979694496802, 6.090193057073, 0.77833652275983, 0.74923429103286, 0.92966992705808, 1.3229751043261, 1.8849792604988, 2.524009597409, 3.1008910810612, 3.4289464416307, 3.2739961734642, 2.3543585350795, 0.77833652275983, 1.3880071769557, 2.1381716926469, 2.8957139599519, 3.4767967033161, 3.6468614815119, 3.1206286876391, 1.5620975491243, -1.4154538722785, -6.2494686804882, 0.77833652275983, 1.6882064144334, 2.5555787288029, 3.2751193339259, 3.7304210304525, 3.7940035516249, 3.3273135632778, 2.1807246638382, 0.19353738432559, -2.8060208116485, 0.77833652275983, 1.5982868830036, 2.2744826664559, 2.7560978140881, 3.0147604484415, 3.0445528736273, 2.8620115753266, 2.5061272207906, 2.0383446588402, 1.5425629198664, 0.77833652275983, 1.2214350933728, 1.5980879771486, 1.7569084557018, 1.5178403949563, 0.67215824514518, -1.0175329591891, -3.8172975991948, -8.0218694717109, -13.954651789267, 0.77833652275983, 0.68350110425162, 0.77861386147368, 0.97581235178894, 1.1341939908368, 1.0598160525329, 0.50569566906943, -0.82819016908496, -3.2949046131853, -7.3005509562103, 0.77833652275983, 0.12208636455387, -0.30877246905582, -0.48094227889849, -0.39896357657152, -0.10521508444048, 0.32008626436092, 0.75888532593079, 1.0552887455991, 1.0155649579277, 0.77833652275983, -0.16765298701795, -1.0634255875761, -1.8055846686938, -2.2742293038136, -2.3329542500415, -1.8288499481469, -0.59250252256298, 1.5620062186141, 4.8370987836243, 0.77833652275983, 0.085651919598506, -0.53679726827283, -0.98349975448283, -1.1477173085559, -0.92148475591224, -0.19560997786786, 1.1403260883655, 3.1979694496802, 6.090193057073 ] count = 0 for th in theta: for rh in rho: zv = 0.0 for j, ci in enumerate(c): zv += ci*self.pupil.Zk(j, rh, th) err = abs(zv - z[count]) self.assertTrue(err <= self.max_enorm) count += 1 def test_eval_a(self): rho = [ 0, 0.11111111111111, 0.22222222222222, 0.33333333333333, 0.44444444444444, 0.55555555555556, 0.66666666666667, 0.77777777777778, 0.88888888888889, 1 ] theta = [ 0, 0.69813170079773, 1.3962634015955, 2.0943951023932, 2.7925268031909, 3.4906585039887, 4.1887902047864, 4.8869219055841, 5.5850536063819, 6.2831853071796 ] c = [ 0.54031374569774, 0.99075098653197, 0.98937811670199, -0.68884118291816, -0.85683760660055, 0.048390017659746, -0.66485340286758, 1.4527419609898, 1.3798457521444, 0.095136418969694, -0.42712706398395, 0.51080780984162, -0.65627362438046, -0.12501677594865, -0.53046670030726 ] phi = [ 0.77833652275983, 0.085651919598506, -0.53679726827283, -0.98349975448282, -1.1477173085559, -0.92148475591224, -0.19560997786786, 1.1403260883655, 3.1979694496802, 6.090193057073, 0.77833652275983, 0.74923429103286, 0.92966992705808, 1.3229751043261, 1.8849792604988, 2.524009597409, 3.1008910810612, 3.4289464416307, 3.2739961734642, 2.3543585350795, 0.77833652275983, 1.3880071769557, 2.1381716926469, 2.8957139599519, 3.4767967033161, 3.6468614815119, 3.1206286876391, 1.5620975491243, -1.4154538722785, -6.2494686804882, 0.77833652275983, 1.6882064144334, 2.5555787288029, 3.2751193339259, 3.7304210304525, 3.7940035516249, 3.3273135632778, 2.1807246638382, 0.19353738432559, -2.8060208116485, 0.77833652275983, 1.5982868830036, 2.2744826664559, 2.7560978140881, 3.0147604484415, 3.0445528736273, 2.8620115753266, 2.5061272207906, 2.0383446588402, 1.5425629198664, 0.77833652275983, 1.2214350933728, 1.5980879771486, 1.7569084557018, 1.5178403949563, 0.67215824514518, -1.0175329591891, -3.8172975991948, -8.0218694717109, -13.954651789267, 0.77833652275983, 0.68350110425162, 0.77861386147368, 0.97581235178894, 1.1341939908368, 1.0598160525329, 0.50569566906943, -0.82819016908496, -3.2949046131853, -7.3005509562103, 0.77833652275983, 0.12208636455387, -0.30877246905582, -0.48094227889849, -0.39896357657152, -0.10521508444048, 0.32008626436092, 0.75888532593079, 1.0552887455991, 1.0155649579277, 0.77833652275983, -0.16765298701795, -1.0634255875761, -1.8055846686938, -2.2742293038136, -2.3329542500415, -1.8288499481469, -0.59250252256298, 1.5620062186141, 4.8370987836243, 0.77833652275983, 0.085651919598506, -0.53679726827283, -0.98349975448283, -1.1477173085559, -0.92148475591224, -0.19560997786786, 1.1403260883655, 3.1979694496802, 6.090193057073 ] count = 0 for th in theta: for rh in rho: phi2 = self.pupil.eval_a(c, rh, th) err = abs(phi2 - phi[count]) self.assertTrue(err <= self.max_enorm) count += 1 def test_rhoitab(self): z = self.pupil for k in range(z.nk): for i in range(z.n + 1): a = (z.rhoitab[k, i])*(z.n + 2 - i) b = z.rhotab[k, i] self.assertTrue(abs(a - b) < self.max_enorm) def test_eval_grid(self): log = logging.getLogger('TestZern.test_eval_grid') z = self.pupil rho_j = np.array([ 0, 0.11111111111111, 0.22222222222222, 0.33333333333333, 0.44444444444444, 0.55555555555556, 0.66666666666667, 0.77777777777778, 0.88888888888889, 1]) theta_i = np.array([ 0, 0.69813170079773, 1.3962634015955, 2.0943951023932, 2.7925268031909, 3.4906585039887, 4.1887902047864, 4.8869219055841, 5.5850536063819, 6.2831853071796]) a = normal(size=z.nk) t1 = time() Phi1 = [z.eval_a(a, rh, th) for rh in rho_j for th in theta_i] t2 = time() log.debug('list eval {:.6f}'.format(t2 - t1)) z.make_pol_grid(rho_j, theta_i) t1 = time() Phi2 = z.eval_grid(np.array(a)) t2 = time() log.debug('numpy eval {:.6f}'.format(t2 - t1)) Phi1 = np.array(Phi1).ravel(order='F') Phi2 = np.array(Phi2).ravel(order='F') log.debug('norm(Phi1 - Phi2) {}'.format(norm(Phi1 - Phi2))) self.assertTrue(norm(Phi1 - Phi2) < self.max_enorm) def test_save_load(self): rho_j = np.array([ 0, 0.11111111111111, 0.22222222222222, 0.33333333333333, 0.44444444444444, 0.55555555555556, 0.66666666666667, 0.77777777777778, 0.88888888888889, 1]) theta_i = np.array([ 0, 0.69813170079773, 1.3962634015955, 2.0943951023932, 2.7925268031909, 3.4906585039887, 4.1887902047864, 4.8869219055841, 5.5850536063819, 6.2831853071796]) def do_test(cls, complex_a): rz1 = cls(4) if complex_a: a = normal(size=rz1.nk) + 1j*normal(size=rz1.nk) else: a = normal(size=rz1.nk) rz1.make_pol_grid(rho_j, theta_i) PhiA = rz1.eval_grid(a) # create tmp path tmpfile = NamedTemporaryFile() tmppath = tmpfile.name tmpfile.close() rz1.save(tmppath) rz2 = cls.load(tmppath) PhiB = rz2.eval_grid(a) self.assertTrue(norm(PhiA - PhiB) < self.max_enorm) self.assertTrue(type(rz1) == type(rz2)) self.assertTrue(norm(rz1.coefnorm - rz2.coefnorm) == 0) self.assertTrue(norm(rz1.ntab - rz2.ntab) == 0) self.assertTrue(norm(rz1.mtab - rz2.mtab) == 0) self.assertTrue(rz1.n == rz2.n) self.assertTrue(rz1.nk == rz2.nk) self.assertTrue(rz1.normalise == rz2.normalise) self.assertTrue(norm(rz1.rhoitab - rz2.rhoitab) == 0) self.assertTrue(norm(rz1.rhotab - rz2.rhotab) == 0) self.assertTrue(rz1.numpy_dtype == rz2.numpy_dtype) self.assertTrue(norm(rz1.ZZ - rz2.ZZ) == 0) os.unlink(tmppath) del rz1, rz2, a, PhiA, PhiB do_test(RZern, False) do_test(CZern, True) def test_normalisations_real(self): log = logging.getLogger('TestZern.test_normalisations_real') n_alpha = 6 L, K = 400, 357 # polar grid pol = RZern(n_alpha) fitAlpha = FitZern(pol, L, K) t1 = time() pol.make_pol_grid(fitAlpha.rho_j, fitAlpha.theta_i) t2 = time() log.debug('make pol grid {:.6f}'.format(t2 - t1)) # cartesian grid cart = RZern(n_alpha) dd = np.linspace(-1.0, 1.0, max(L, K)) xx, yy = np.meshgrid(dd, dd) t1 = time() cart.make_cart_grid(xx, yy) t2 = time() log.debug('make cart grid {:.6f}'.format(t2 - t1)) smap = np.isfinite(cart.eval_grid(np.zeros(cart.nk))) scale = (1.0/np.sum(smap)) log.debug('') log.debug('{} modes, {} x {} grid'.format(n_alpha, L, K)) for i in range(pol.nk): a = np.zeros(pol.nk) a[i] = 1.0 Phi_a = cart.eval_grid(a) for j in range(pol.nk): b = np.zeros(pol.nk) b[j] = 1.0 Phi_b = cart.eval_grid(b) ip = scale*np.sum(Phi_a[smap]*Phi_b[smap]) if i == j: eip = 1.0 else: eip = 0.0 iperr = abs(ip - eip) log.debug('<{:02},{:02}> = {:+e} {:+e}'.format( i + 1, j + 1, ip, iperr)) self.assertTrue(iperr < self.max_ip_err) def test_normalisations_complex(self): log = logging.getLogger('TestZern.test_normalisations_complex') n_beta = 6 L, K = 400, 393 # polar grid pol = CZern(n_beta) fitBeta = FitZern(pol, L, K) t1 = time() pol.make_pol_grid(fitBeta.rho_j, fitBeta.theta_i) t2 = time() log.debug('make pol grid {:.6f}'.format(t2 - t1)) # cartesian grid cart = CZern(n_beta) dd = np.linspace(-1.0, 1.0, max(L, K)) xx, yy = np.meshgrid(dd, dd) t1 = time() cart.make_cart_grid(xx, yy) t2 = time() log.debug('make cart grid {:.6f}'.format(t2 - t1)) smap = np.isfinite(cart.eval_grid(np.zeros(cart.nk))) scale = (1.0/np.sum(smap)) log.debug('') log.debug('{} modes, {} x {} grid'.format(n_beta, L, K)) for i in range(pol.nk): a = np.zeros(pol.nk) a[i] = 1.0 Phi_a = cart.eval_grid(a) for j in range(pol.nk): b = np.zeros(pol.nk) b[j] = 1.0 Phi_b = cart.eval_grid(b) ip = scale*np.sum(Phi_a[smap]*(Phi_b[smap].conj())) if i == j: eip = 1.0 else: eip = 0.0 iperr = abs(ip - eip) log.debug('<{:02},{:02}> = {:+e} {:+e}'.format( i + 1, j + 1, ip, iperr)) self.assertTrue(iperr < self.max_ip_err)
def main_Calib(filename, output, mode, alg, basis, order, figure, verbose, offset, qt, pre, split): ''' # main program # input: radius: %+.3f, 'str' (in makefile, str is default) # path: file storage path, 'str' # fout: file output name as .h5, 'str' (.h5 not included') # cut_max: cut off of Legendre # output: the gathered result EventID, ChannelID, x, y, z ''' if pre != 'r': print('begin reading file', flush=True) EventID, ChannelID, Q, PETime, photonTime, PulseTime, dETime, x, y, z = pub.ReadFile(filename) VertexTruth = (np.vstack((x, y, z))/1e3).T if(offset): off = pub.LoadBase(offset) else: off = np.zeros_like(PMTPos[:,0]) print('total event: %d' % np.size(np.unique(EventID)), flush=True) print('begin processing legendre coeff', flush=True) # this part for the same vertex tmp = time.time() EventNo = np.size(np.unique(EventID)) PMTNo = np.size(PMTPos[:,0]) if mode == 'PE': PMTPosRep = np.tile(PMTPos, (EventNo,1)) vertex = np.repeat(VertexTruth, PMTNo, axis=0) elif mode == 'time': counts = np.bincount(EventID) counts = counts[counts!=0] PMTPosRep = PMTPos[ChannelID] vertex = np.repeat(VertexTruth, counts, axis=0) elif mode == 'combined': PMTPosRep = np.tile(PMTPos, (EventNo,1)) vertex = np.repeat(VertexTruth, PMTNo, axis=0) if basis == 'Legendre': X, cos_theta = pub.LegendreCoeff(PMTPosRep, vertex, order, Legendre=True) elif basis == 'Zernike': from zernike import RZern cos_theta = pub.LegendreCoeff(PMTPosRep, vertex, order, Legendre=False) cart = RZern(order) nk = cart.nk m = cart.mtab n = cart.ntab rho = np.linalg.norm(vertex, axis=1)/0.65 theta = np.arccos(cos_theta) X = np.zeros((rho.shape[0], nk)) for i in np.arange(nk): if not i % 5: print(f'process {i}-th event') X[:,i] = cart.Zk(i, rho, theta) X = X[:,m>=0] print(f'rank: {np.linalg.matrix_rank(X)}') print(f'use {time.time() - tmp} s') # which info should be used if mode == 'PE': y = Q elif mode == 'time': y = PulseTime elif mode == 'combined': # PulseTime = PulseTime - np.min(PulseTime) # PulseTime = (PulseTime - np.max(PulseTime)/2)/np.max(PulseTime)*2 # print(np.min(PulseTime), np.max(PulseTime)) PulseTime = (PulseTime - np.max(PulseTime)/2)/np.max(PulseTime)*2 bins = np.arange(-1, 0.05, 0.1) N = 10 # Legendre coeff x = pub.legval(bins, np.eye(N).reshape(N, N, 1)) # 1st basis Y = np.tile(x, len(np.unique(EventID))*len(np.unique(ChannelID))).T # 2nd basis X = np.repeat(X, bins.shape[0], axis=0) # output y = np.zeros((len(np.unique(EventID)), len(np.unique(ChannelID)), len(bins))) ''' basis = np.zeros((X.shape[0], X.shape[1]*Y.shape[1])) for i_index, i in enumerate(np.arange(X.shape[1])): for j_index, j in enumerate(np.arange(Y.shape[1])): total_index = i_index*Y.shape[1] + j_index if not total_index % 10: print(total_index) basis[:, total_index] = X[:,i_index]*Y[:,j_index] X = basis ''' split_index = np.unique(EventID).shape[0] for k_index, k in enumerate(np.unique(EventID)): # event begin with 1 if k_index > split_index * split: break if not k % 100: print(k) index = EventID == k CID = ChannelID[index] Pulse_t = PulseTime[index] for i in np.unique(CID): # PMT begin with 0 y[k_index, i, 1:], _ = np.histogram(Pulse_t[CID==i], bins=bins) y = np.reshape(y,(-1)) if verbose: print(f'the basis shape is {X.shape}, and the dependent variable shape is {y.shape}') if pre =='w': if split != 1: split_index = np.int(split*y.shape[0]) X = X[:split_index] Y = Y[:split_index] y = y[:split_index] import pandas as pd import pyarrow as pa import pyarrow.parquet as pq y = np.atleast_2d(y).T #data = np.hstack((X, y, np.ones_like(y))) df_X = pd.DataFrame(X) X_names = [] for i in df_X.columns: X_names.append('X' + str(i)) df_X.columns = X_names df_Y = pd.DataFrame(Y) Y_names = [] for i in df_Y.columns: Y_names.append('Y' + str(i)) df_Y.columns = Y_names df_y = pd.DataFrame(y) df_y.columns = ['output'] df = pd.concat([df_X, df_Y, df_y], axis=1) table = pa.Table.from_pandas(df) pq.write_table(table, 'test1.parquet') return if not pre: # Regression methods: if alg == 'sms': import statsmodels.api as sm if mode == 'PE': model = sm.GLM(y, X, family=sm.families.Poisson(), fit_intercept=False) result = model.fit() if verbose: print(result.summary()) AIC = result.aic coef_ = result.params std = result.bse elif mode == 'time': import pandas as pd data = pd.DataFrame(data = np.hstack((X, np.atleast_2d(y).T))) strs = 'y ~ ' start = data.keys().start stop = data.keys().stop step = data.keys().step cname = [] cname.append('X0') for i in np.arange(start+1, stop, step): if i == start + 1: strs += 'X%d ' % i elif i == stop - step: pass else: strs += ' + X%d ' % i if i == stop - step: cname.append('y') else: cname.append('X%d' % i) data.columns = cname mod = sm.formula.quantreg(strs, data[cname]) result = mod.fit(q=qt,) coef_ = result.params AIC = np.zeros_like(coef_) std = np.zeros_like(coef_) print('Waring! No AIC and std value') elif mode == 'combined': # data = pd.DataFrame(data = np.hstack((basis, np.atleast_2d(y).T))) with h5py.File(output,'w') as out: out.create_dataset('X', data = X) out.create_dataset('Y', data = y) print('begin...') model = sm.GLM(y, X, family=sm.families.Poisson()) result = model.fit() if verbose: print(result.summary()) coef_ = result.params std = result.bse AIC = result.aic if verbose: print(result.summary()) elif (alg == 'custom'): from scipy.optimize import minimize x0 = np.zeros_like(X[0]) # initial value (be careful of Zernike order) if mode == 'PE': x0[0] = 0.8 + np.log(2) # intercept is much more important result = minimize(pub.CalibPE, x0=x0, method='SLSQP', args = (y, PMTPos, X)) elif mode == 'time': x0[0] = np.mean(y) qt = 0.1 ts = 2.6 result = minimize(pub.CalibTime, x0=x0, method='SLSQP', args = (np.hstack((EventID, EventID)), y, X, qt, ts)) elif mode == 'combined': x0 = np.zeros_like(X[0]) x0[0] = 0.8 + np.log(2) # intercept is much more important result = minimize(pub.CalibPE, x0=x0, method='SLSQP', args = (y, PMTPos, X)) coef_ = np.array(result.x, dtype=float) if verbose: print(result.message) AIC = np.zeros_like(coef_) std = np.zeros_like(coef_) H = pub.MyHessian(result.x, pub.CalibPE, *(y, PMTPos, X)) # H = pub.MyHessian(result.x, *(Q, PMTPos, X, pub.CalibTime)) # std = 1/np.sqrt(-np.diag(np.linalg.pinv(H1))) print(coef_) # print(std) print('Waring! No AIC and std value, std is testing') elif alg == 'sk': from sklearn.linear_model import TweedieRegressor alpha = 0.001 reg = TweedieRegressor(power=1, alpha=alpha, link='log', max_iter=1000, tol=1e-6, fit_intercept=False) reg.fit(X, y) # just for point data # pred = reg.predict(X[0:30,0:cut+1]) print('coeff:\n', reg.coef_,'\n') coef_ = reg.coef_ AIC = np.zeros_like(coef_) std = np.zeros_like(coef_) print('Waring! No AIC and std value') elif alg == 'h2o': import h2o from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.estimators.glm import H2OGeneralizedLinearEstimator if mode != 'combined': y = np.atleast_2d(y).T data = np.hstack((X, y, np.ones_like(y))) h2o.init() hf = h2o.H2OFrame(data) predictors = hf.columns[0:-2] response_col = hf.columns[-2] if mode == 'PE': #offset_col = hf.columns[-1] glm_model = H2OGeneralizedLinearEstimator(family= "poisson", #offset_column = offset_col, lambda_ = 0, compute_p_values = True) glm_model.train(predictors, response_col, training_frame=hf) coef_table = glm_model._model_json['output']['coefficients_table'] coef_ = glm_model.coef() elif mode == 'time': gbm = H2OGradientBoostingEstimator(distribution="quantile", seed = 1234, stopping_metric = "mse", stopping_tolerance = 1e-4) gbm.train(x = predictors, y = response_col, training_frame = hf) breakpoint() print(gbm) exit() elif mode == 'combined': y = np.atleast_2d(y).T data = np.hstack((X, Y, y, np.ones_like(y))) h2o.init() hf = h2o.H2OFrame(data) predictors = hf.columns[0:-2] response_col = hf.columns[-2] if verbose: print(coef_) if basis == 'Zernike': print(f'Regession coef shape is f{np.array(coef_).shape}, Zernike shape is {nk}') coef_ = coef_table['coefficients'] std = coef_table['std_error'] AIC = glm_model.aic() h2o.cluster().shutdown() elif pre == 'r': import h2o from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.estimators.glm import H2OGeneralizedLinearEstimator h2o.init() hf = h2o.import_file("electron-1.parquet") pairs = [] for i in hf.columns: for j in hf.columns: if (i.startswith('Z') and j.startswith('L')): if ((i!='X0') and (j != 'Y0')): pairs.append((i,j)) predictors = hf.columns[2:] response_col = hf.columns[0] print(predictors) print(response_col) print(pairs) if mode == 'PE': #offset_col = hf.columns[-1] glm_model = H2OGeneralizedLinearEstimator(family= "poisson", #offset_column = offset_col, lambda_ = 0, compute_p_values = True) glm_model.train(predictors, response_col, training_frame=hf) elif mode == 'combined': #offset_col = hf.columns[-1] glm_model = H2OGeneralizedLinearEstimator(family= "poisson", #offset_column = offset_col, interaction_pairs=pairs, lambda_ = 0, #remove_collinear_columns = True, compute_p_values = True) glm_model.train(predictors, response_col, training_frame=hf) breakpoint() coef_table = glm_model._model_json['output']['coefficients_table'] coef_ = coef_table['coefficients'] std = coef_table['std_error'] AIC = glm_model.aic() print(f'Regession coef is f{np.array(coef_)}') if (figure=='ON'): import matplotlib.pyplot as plt L, K = 500, 500 ddx = np.linspace(-1.0, 1.0, K) ddy = np.linspace(-1.0, 1.0, L) xv, yv = np.meshgrid(ddx, ddy) cart.make_cart_grid(xv, yv) # normal scale # im = plt.imshow(np.exp(cart.eval_grid(np.array(coef_), matrix=True)), origin='lower', extent=(-1, 1, -1, 1)) # log scale im = plt.imshow(cart.eval_grid(np.array(coef_), matrix=True), origin='lower', extent=(-1, 1, -1, 1)) plt.colorbar() plt.savefig('test.png') else: print('error regression algorithm') with h5py.File(output,'w') as out: out.create_dataset('coeff' + str(order), data = coef_) out.create_dataset('std' + str(order), data = std) out.create_dataset('AIC' + str(order), data = AIC)