コード例 #1
0
ファイル: simple_cnn.py プロジェクト: qianrenjian/xingtian
 def __init__(self, **desc):
     desc = Config(**desc)
     self.num_class = desc.num_class
     self.fp16 = desc.get('fp16', False)
     self.blocks = desc.blocks
     self.channels = desc.channels
     self.conv = tf.layers.conv2d
     self.pool = tf.layers.max_pooling2d
     self.flat = tf.reshape
     self.bn = tf.layers.batch_normalization
     self.fc = tf.layers.dense
     self.dropout = tf.layers.dropout
     self.relu = tf.nn.relu
コード例 #2
0
ファイル: metrics.py プロジェクト: vineetrao25/vega
class Metrics(object):
    """Metrics class of all metrics defined in cfg.

    :param metric_cfg: metric part of config
    :type metric_cfg: dict or Config
    """

    config = MetricsConfig()

    def __init__(self, metric_cfg=None):
        """Init Metrics."""
        self.mdict = {}
        metric_config = self.config.to_dict()
        if not isinstance(metric_config, list):
            metric_config = [metric_config]
        for metric_item in metric_config:
            ClassFactory.get_cls(ClassType.METRIC, self.config.type)
            metric_name = metric_item.pop('type')
            metric_class = ClassFactory.get_cls(ClassType.METRIC, metric_name)
            if isfunction(metric_class):
                metric_class = partial(metric_class,
                                       **metric_item.get("params", {}))
            else:
                metric_class = metric_class(**metric_item.get("params", {}))
            self.mdict[metric_name] = metric_class
        self.mdict = Config(self.mdict)
        self.metric_results = dict()

    def __call__(self, output=None, target=None, *args, **kwargs):
        """Calculate all supported metrics by using output and target.

        :param output: predicted output by networks
        :type output: torch tensor
        :param target: target label data
        :type target: torch tensor
        :return: performance of metrics
        :rtype: list
        """
        for key in self.mdict:
            metric = self.mdict[key]
        res = metric(output, target, *args, **kwargs)
        return res

    def reset(self):
        """Reset states for new evaluation after each epoch."""
        self.metric_results = dict()

    @property
    def results(self):
        """Return metrics results."""
        return deepcopy(self.metric_results)

    @property
    def objectives(self):
        """Return objectives results."""
        return {name: self.mdict.get(name).objective for name in self.mdict}

    def update(self, metrics):
        """Update the metrics results.

        :param metrics: outside metrics
        :type metrics: dict
        """
        for key in metrics:
            self.metric_results[key] = metrics[key]
コード例 #3
0
class Metrics(object):
    """Metrics class of all metrics defined in cfg.

    :param metric_cfg: metric part of config
    :type metric_cfg: dict or Config
    """

    config = MetricsConfig()

    def __init__(self, metric_cfg=None):
        """Init Metrics."""
        self.mdict = {}
        metric_config = self.config.to_dict() if not metric_cfg else deepcopy(metric_cfg)
        if not isinstance(metric_config, list):
            metric_config = [metric_config]
        for metric_item in metric_config:
            ClassFactory.get_cls(ClassType.METRIC, self.config.type)
            metric_name = metric_item.pop('type')
            metric_class = ClassFactory.get_cls(ClassType.METRIC, metric_name)
            if isfunction(metric_class):
                metric_class = partial(metric_class, **metric_item.get("params", {}))
            else:
                metric_class = metric_class(**metric_item.get("params", {}))
            self.mdict[metric_name] = metric_class
        self.mdict = Config(self.mdict)

    def __call__(self, output=None, target=None, *args, **kwargs):
        """Calculate all supported metrics by using output and target.

        :param output: predicted output by networks
        :type output: torch tensor
        :param target: target label data
        :type target: torch tensor
        :return: performance of metrics
        :rtype: list
        """
        pfms = []
        for key in self.mdict:
            metric = self.mdict[key]
            pfms.append(metric(output, target, *args, **kwargs))
        return pfms

    def reset(self):
        """Reset states for new evaluation after each epoch."""
        for val in self.mdict.values():
            val.reset()

    @property
    def results(self):
        """Return metrics results."""
        res = {}
        for name, metric in self.mdict.items():
            res.update(metric.result)
        return res

    @property
    def objectives(self):
        """Return objectives results."""
        return {name: self.mdict.get(name).objective for name in self.mdict}

    def __getattr__(self, key):
        """Get a metric by key name.

        :param key: metric name
        :type key: str
        """
        return self.mdict[key]