コード例 #1
0
def test_add():
    param1 = zfit.Parameter("param1", 1.)
    param2 = zfit.Parameter("param2", 2.)
    param3 = zfit.Parameter("param3", 2.)

    pdfs = [0] * 4
    pdfs[0] = Gauss(param1, 4, obs=obs1)
    pdfs[1] = Gauss(param2, 5, obs=obs1)
    pdfs[2] = Gauss(3, 6, obs=obs1)
    pdfs[3] = Gauss(4, 7, obs=obs1)

    datas = [0] * 4
    datas[0] = zfit.Data.from_tensor(obs=obs1, tensor=z.constant(1.))
    datas[1] = zfit.Data.from_tensor(obs=obs1, tensor=z.constant(2.))
    datas[2] = zfit.Data.from_tensor(obs=obs1, tensor=z.constant(3.))
    datas[3] = zfit.Data.from_tensor(obs=obs1, tensor=z.constant(4.))

    ranges = [0] * 4
    ranges[0] = (1, 4)
    ranges[1] = Space(limits=(2, 5), obs=obs1)
    ranges[2] = Space(limits=(3, 6), obs=obs1)
    ranges[3] = Space(limits=(4, 7), obs=obs1)

    constraint1 = zfit.constraint.nll_gaussian(params=param1, observation=1., uncertainty=0.5)
    constraint2 = zfit.constraint.nll_gaussian(params=param3, observation=2., uncertainty=0.25)
    merged_contraints = [constraint1, constraint2]

    nll1 = UnbinnedNLL(model=pdfs[0], data=datas[0], fit_range=ranges[0], constraints=constraint1)
    nll2 = UnbinnedNLL(model=pdfs[1], data=datas[1], fit_range=ranges[1], constraints=constraint2)
    nll3 = UnbinnedNLL(model=[pdfs[2], pdfs[3]], data=[datas[2], datas[3]], fit_range=[ranges[2], ranges[3]])

    simult_nll = nll1 + nll2 + nll3

    assert simult_nll.model == pdfs
    assert simult_nll.data == datas

    ranges[0] = Space(limits=ranges[0], obs='obs1',
                      axes=(0,))  # for comparison, Space can only compare with Space
    ranges[1].coords._axes = (0,)
    ranges[2].coords._axes = (0,)
    ranges[3].coords._axes = (0,)
    assert simult_nll.fit_range == ranges

    def eval_constraint(constraints):
        return z.reduce_sum([c.value() for c in constraints]).numpy()

    assert eval_constraint(simult_nll.constraints) == eval_constraint(merged_contraints)
    assert set(simult_nll.get_params()) == {param1, param2, param3}
コード例 #2
0
ファイル: test_loss.py プロジェクト: zfit/zfit
def test_gradients(chunksize):
    from numdifftools import Gradient

    zfit.run.chunking.active = True
    zfit.run.chunking.max_n_points = chunksize

    initial1 = 1.0
    initial2 = 2
    param1 = zfit.Parameter("param1", initial1)
    param2 = zfit.Parameter("param2", initial2)

    gauss1 = Gauss(param1, 4, obs=obs1)
    gauss1.set_norm_range((-5, 5))
    gauss2 = Gauss(param2, 5, obs=obs1)
    gauss2.set_norm_range((-5, 5))

    data1 = zfit.Data.from_tensor(obs=obs1,
                                  tensor=z.constant(1.0, shape=(100, )))
    data1.set_data_range((-5, 5))
    data2 = zfit.Data.from_tensor(obs=obs1,
                                  tensor=z.constant(1.0, shape=(100, )))
    data2.set_data_range((-5, 5))

    nll = UnbinnedNLL(model=[gauss1, gauss2], data=[data1, data2])

    def loss_func(values):
        for val, param in zip(values, nll.get_cache_deps(only_floating=True)):
            param.set_value(val)
        return nll.value().numpy()

    # theoretical, numerical = tf.test.compute_gradient(loss_func, list(params))
    gradient1 = nll.gradient(params=param1)
    gradient_func = Gradient(loss_func)
    # gradient_func = lambda *args, **kwargs: list(gradient_func_numpy(*args, **kwargs))
    assert gradient1[0].numpy() == pytest.approx(
        gradient_func([param1.numpy()]))
    param1.set_value(initial1)
    param2.set_value(initial2)
    params = [param2, param1]
    gradient2 = nll.gradient(params=params)
    both_gradients_true = list(
        reversed(list(gradient_func([initial1, initial2
                                     ]))))  # because param2, then param1
    assert [g.numpy() for g in gradient2] == pytest.approx(both_gradients_true)

    param1.set_value(initial1)
    param2.set_value(initial2)
    gradient3 = nll.gradient()
    assert frozenset(g.numpy() for g in gradient3) == pytest.approx(
        frozenset(both_gradients_true))
コード例 #3
0
def create_gauss3ext():
    mu, sigma, yield3 = create_params3()
    gaussian3 = Gauss(mu, sigma, obs=obs1, name="gaussian3")
    gaussian3 = gaussian3.create_extended(yield3)
    return gaussian3, mu, sigma, yield3
コード例 #4
0
def create_gauss2():
    mu, sigma = create_params2()
    return Gauss(mu, sigma, obs=obs1, name="gaussian2"), mu, sigma