def test_missing_values_assertion(self): sessions = self.trading_calendar.sessions_in_range( TEST_CALENDAR_START, TEST_CALENDAR_STOP, ) sessions_with_gap = sessions[sessions != self.MISSING_DATA_DAY] bar_data = make_bar_data(self.make_equity_info(), sessions_with_gap) writer = BcolzDailyBarWriter( self.tmpdir.path, self.trading_calendar, sessions[0], sessions[-1], ) # There are 21 sessions between the start and end date for this # asset, and we excluded one. expected_msg = re.escape( "Got 20 rows for daily bars table with first day=2015-06-02, last " "day=2015-06-30, expected 21 rows.\n" "Missing sessions: " "[Timestamp('2015-06-15 00:00:00+0000', tz='UTC')]\n" "Extra sessions: []" ) with self.assertRaisesRegexp(AssertionError, expected_msg): writer.write(bar_data)
def test_missing_values_assertion(self): sessions = self.trading_calendar.sessions_in_range( TEST_CALENDAR_START, TEST_CALENDAR_STOP, ) sessions_with_gap = sessions[sessions != self.MISSING_DATA_DAY] bar_data = make_bar_data(self.make_equity_info(), sessions_with_gap) writer = BcolzDailyBarWriter( self.tmpdir.path, self.trading_calendar, sessions[0], sessions[-1], ) # There are 21 sessions between the start and end date for this # asset, and we excluded one. expected_msg = re.escape( "Got 20 rows for daily bars table with first day=2015-06-02, last " "day=2015-06-30, expected 21 rows.\n" "Missing sessions: " "[Timestamp('2015-06-15 00:00:00+0000', tz='UTC')]\n" "Extra sessions: []") with self.assertRaisesRegexp(AssertionError, expected_msg): writer.write(bar_data)
def create_data_portal_from_trade_history(asset_finder, trading_calendar, tempdir, sim_params, trades_by_sid): if sim_params.data_frequency == "daily": path = os.path.join(tempdir.path, "testdaily.bcolz") writer = BcolzDailyBarWriter( path, trading_calendar, sim_params.start_session, sim_params.end_session ) writer.write( trades_by_sid_to_dfs(trades_by_sid, sim_params.sessions), ) equity_daily_reader = BcolzDailyBarReader(path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_daily_reader.first_trading_day, equity_daily_reader=equity_daily_reader, ) else: minutes = trading_calendar.minutes_in_range( sim_params.first_open, sim_params.last_close ) length = len(minutes) assets = {} for sidint, trades in iteritems(trades_by_sid): opens = np.zeros(length) highs = np.zeros(length) lows = np.zeros(length) closes = np.zeros(length) volumes = np.zeros(length) for trade in trades: # put them in the right place idx = minutes.searchsorted(trade.dt) opens[idx] = trade.open_price * 1000 highs[idx] = trade.high * 1000 lows[idx] = trade.low * 1000 closes[idx] = trade.close_price * 1000 volumes[idx] = trade.volume assets[sidint] = pd.DataFrame({ "open": opens, "high": highs, "low": lows, "close": closes, "volume": volumes, "dt": minutes }).set_index("dt") write_bcolz_minute_data( trading_calendar, sim_params.sessions, tempdir.path, assets ) equity_minute_reader = BcolzMinuteBarReader(tempdir.path) return DataPortal( asset_finder, trading_calendar, first_trading_day=equity_minute_reader.first_trading_day, equity_minute_reader=equity_minute_reader, )