コード例 #1
0
ファイル: loader.py プロジェクト: SethCalkins/intuition
    def surcharge_market_data(self, bm_symbol='^GSPC'):
        #TODO Parametric
        #event_dt = datetime.today().replace(tzinfo=pytz.utc)
        event_dt = self.normalize_date(datetime.now())

        #TODO Handle invalid code
        for exchange, infos in datautils.Exchanges.iteritems():
            if infos['symbol'] == bm_symbol:
                code = datautils.Exchanges[exchange]['code']
                break

        bm_returns, tr_curves = zipline.load_market_data(bm_symbol)

        dates = pd.date_range(event_dt,
                              periods=len(bm_returns))
        #NOTE What is tr_curves['tid'] ?
        #TODO Replace values to detect the fake later
        tr_fake = OrderedDict(sorted(
            ((pd.Timestamp(event_dt + i*self.offset), c)
             for i, c in enumerate(tr_curves.values())),
            key=lambda t: t[0]))

        bm_fake = pd.Series([code] * len(dates), index=dates)
        for i, dt in enumerate(tr_curves.keys()):
            pd.Timestamp(event_dt + i * self.offset)

        return bm_fake, tr_fake
コード例 #2
0
ファイル: loader.py プロジェクト: trodjr/intuition
    def _load_live_market_data(self, bm_symbol='^GSPC'):
        #TODO Parametric
        #event_dt = datetime.today().replace(tzinfo=pytz.utc)
        event_dt = self.normalize_date(datetime.now())

        bm_returns, tr_curves = zipline.load_market_data(bm_symbol)

        dates = pd.date_range(event_dt, periods=len(bm_returns))
        #NOTE What is tr_curves['tid'] ?
        #TODO Replace values to detect the fake later
        tr_fake = OrderedDict(
            sorted(((pd.Timestamp(event_dt + i * self.offset), c)
                    for i, c in enumerate(tr_curves.values())),
                   key=lambda t: t[0]))

        # NOTE the code concept is deprecated
        bm_fake = pd.Series([1001] * len(dates), index=dates)
        for i, dt in enumerate(tr_curves.keys()):
            pd.Timestamp(event_dt + i * self.offset)

        return bm_fake, tr_fake
コード例 #3
0
ファイル: loader.py プロジェクト: Coding4ufn/intuition
    def _load_live_market_data(self, bm_symbol='^GSPC'):
        #TODO Parametric
        #event_dt = datetime.today().replace(tzinfo=pytz.utc)
        event_dt = self.normalize_date(datetime.now())

        bm_returns, tr_curves = zipline.load_market_data(bm_symbol)

        dates = pd.date_range(event_dt,
                              periods=len(bm_returns))
        #NOTE What is tr_curves['tid'] ?
        #TODO Replace values to detect the fake later
        tr_fake = OrderedDict(sorted(
            ((pd.Timestamp(event_dt + i * self.offset), c)
             for i, c in enumerate(tr_curves.values())),
            key=lambda t: t[0]))

        # NOTE the code concept is deprecated
        bm_fake = pd.Series([1001] * len(dates), index=dates)
        for i, dt in enumerate(tr_curves.keys()):
            pd.Timestamp(event_dt + i * self.offset)

        return bm_fake, tr_fake
コード例 #4
0
ファイル: run_algo.py プロジェクト: brett-swiecicki/zipline
def _run(handle_data,
         initialize,
         before_trading_start,
         analyze,
         algofile,
         algotext,
         defines,
         data_frequency,
         capital_base,
         bundle,
         bundle_timestamp,
         custom_data_portal,
         start,
         end,
         output,
         trading_calendar,
         print_algo,
         metrics_set,
         local_namespace,
         environ,
         blotter,
         benchmark_returns):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`zipline.run_algo`.
    """
    if benchmark_returns is None:
        benchmark_returns, _ = load_market_data(environ=environ)

    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign,
                )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' % (name, e),
                )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    if trading_calendar is None:
        trading_calendar = get_calendar('XNYS')

    # date parameter validation
    if trading_calendar.session_distance(start, end) < 1:
        raise _RunAlgoError(
            'There are no trading days between %s and %s' % (
                start.date(),
                end.date(),
            ),
        )

    bundle_data = bundles.load(
        bundle,
        environ,
        bundle_timestamp,
    )

    # TODO: Fix this for the custom DataPortal case.
    first_trading_day = \
        bundle_data.equity_minute_bar_reader.first_trading_day

    if custom_data_portal is None:
        data = DataPortal(
            bundle_data.asset_finder,
            trading_calendar=trading_calendar,
            first_trading_day=first_trading_day,
            equity_minute_reader=bundle_data.equity_minute_bar_reader,
            equity_daily_reader=bundle_data.equity_daily_bar_reader,
            adjustment_reader=bundle_data.adjustment_reader,
        )
    else:
        data = custom_data_portal

    # TODO: Fix this for the custom DataPortal case.
    pipeline_loader = USEquityPricingLoader(
        bundle_data.equity_daily_bar_reader,
        bundle_data.adjustment_reader,
    )

    def choose_loader(column):
        if column in USEquityPricing.columns:
            return pipeline_loader
        raise ValueError(
            "No PipelineLoader registered for column %s." % column
        )

    if isinstance(metrics_set, six.string_types):
        try:
            metrics_set = metrics.load(metrics_set)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    if isinstance(blotter, six.string_types):
        try:
            blotter = load(Blotter, blotter)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    perf = TradingAlgorithm(
        namespace=namespace,
        data_portal=data,
        get_pipeline_loader=choose_loader,
        trading_calendar=trading_calendar,
        sim_params=SimulationParameters(
            start_session=start,
            end_session=end,
            trading_calendar=trading_calendar,
            capital_base=capital_base,
            data_frequency=data_frequency,
        ),
        metrics_set=metrics_set,
        blotter=blotter,
        benchmark_returns=benchmark_returns,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }
    ).run()

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the zipline magic not write any data
        perf.to_pickle(output)

    return perf
コード例 #5
0
ファイル: run_algo.py プロジェクト: liudengfeng/zipline
def _run(handle_data,
         initialize,
         before_trading_start,
         analyze,
         algofile,
         algotext,
         defines,
         data_frequency,
         capital_base,
         bundle,
         bundle_timestamp,
         start,
         end,
         output,
         trading_calendar,
         print_algo,
         metrics_set,
         local_namespace,
         environ,
         blotter,
         benchmark_returns):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`zipline.run_algo`.
    """
    if benchmark_returns is None:
        benchmark_returns, _ = load_market_data(environ=environ)

    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign,
                )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' % (name, e),
                )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    if trading_calendar is None:
        trading_calendar = get_calendar('XSHG')

    # date parameter validation
    if trading_calendar.session_distance(start, end) < 1:
        raise _RunAlgoError(
            'There are no trading days between %s and %s' % (
                start.date(),
                end.date(),
            ),
        )

    bundle_data = bundles.load(
        bundle,
        environ,
        bundle_timestamp,
    )

    first_trading_day = \
        bundle_data.equity_minute_bar_reader.first_trading_day

    data = DataPortal(
        bundle_data.asset_finder,
        trading_calendar=trading_calendar,
        first_trading_day=first_trading_day,
        equity_minute_reader=bundle_data.equity_minute_bar_reader,
        equity_daily_reader=bundle_data.equity_daily_bar_reader,
        adjustment_reader=bundle_data.adjustment_reader,
    )

    pipeline_loader = CNEquityPricingLoader(
        bundle_data.equity_daily_bar_reader,
        bundle_data.adjustment_reader,
    )

    def choose_loader(column):
        if column in CNEquityPricing.columns:
            return pipeline_loader
        # # 简单处理
        elif type(column) == BoundColumn:
            # # 使用实例才能避免KeyError
            return global_loader
        raise ValueError(
            "No PipelineLoader registered for column %s." % column
        )

    if isinstance(metrics_set, six.string_types):
        try:
            metrics_set = metrics.load(metrics_set)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    if isinstance(blotter, six.string_types):
        try:
            blotter = load(Blotter, blotter)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    perf = TradingAlgorithm(
        namespace=namespace,
        data_portal=data,
        get_pipeline_loader=choose_loader,
        trading_calendar=trading_calendar,
        sim_params=SimulationParameters(
            start_session=start,
            end_session=end,
            trading_calendar=trading_calendar,
            capital_base=capital_base,
            data_frequency=data_frequency,
        ),
        metrics_set=metrics_set,
        blotter=blotter,
        benchmark_returns=benchmark_returns,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }
    ).run()

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the zipline magic not write any data
        perf.to_pickle(output)

    return perf
コード例 #6
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, bundle,
         bundle_timestamp, start, end, output, trading_calendar, print_algo,
         metrics_set, local_namespace, environ, blotter, benchmark_returns,
         broker, state_filename, realtime_bar_target, performance_callback,
         stop_execution_callback, teardown, execution_id):
    """
    Run a backtest for the given algorithm.
    This is shared between the cli and :func:`zipline.run_algo`.

    zipline-live additions:
    broker - wrapper to connect to a real broker
    state_filename - saving the context of the algo to be able to restart
    performance_callback - a callback to send performance results everyday and not only at the end of the backtest.
        this allows to run live, and monitor the performance of the algorithm
    stop_execution_callback - A callback to check if execution should be stopped. it is used to be able to stop live
        trading (also simulation could be stopped using this) execution. if the callback returns True, then algo
        execution will be aborted.
    teardown - algo method like handle_data() or before_trading_start() that is called when the algo execution stops
    execution_id - unique id to identify this execution (backtest or live instance)
    """
    if benchmark_returns is None:
        benchmark_returns, _ = load_market_data(environ=environ)

    emission_rate = 'daily'
    if broker:
        emission_rate = 'minute'
        # if we run zipline as a command line tool, these will probably not be initiated
        if not start:
            start = pd.Timestamp.utcnow()
        if not end:
            # in cli mode, sessions are 1 day only. and it will be re-ran each day by user
            end = start + pd.Timedelta('1 day')

    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    if trading_calendar is None:
        trading_calendar = get_calendar('NYSE')

    # date parameter validation
    if trading_calendar.session_distance(start, end) < 1:
        raise _RunAlgoError(
            'There are no trading days between %s and %s' % (
                start.date(),
                end.date(),
            ), )

    bundle_data = bundles.load(
        bundle,
        environ,
        bundle_timestamp,
    )

    first_trading_day = \
        bundle_data.equity_minute_bar_reader.first_trading_day

    DataPortalClass = (partial(DataPortalLive, broker)
                       if broker else DataPortal)

    data = DataPortalClass(
        bundle_data.asset_finder,
        trading_calendar=trading_calendar,
        first_trading_day=first_trading_day,
        equity_minute_reader=bundle_data.equity_minute_bar_reader,
        equity_daily_reader=bundle_data.equity_daily_bar_reader,
        adjustment_reader=bundle_data.adjustment_reader,
    )

    pipeline_loader = USEquityPricingLoader(
        bundle_data.equity_daily_bar_reader,
        bundle_data.adjustment_reader,
    )

    def choose_loader(column):
        if column in USEquityPricing.columns:
            return pipeline_loader
        raise ValueError("No PipelineLoader registered for column %s." %
                         column)

    if isinstance(metrics_set, six.string_types):
        try:
            metrics_set = metrics.load(metrics_set)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    if isinstance(blotter, six.string_types):
        try:
            blotter = load(Blotter, blotter)
        except ValueError as e:
            raise _RunAlgoError(str(e))

    TradingAlgorithmClass = (partial(LiveTradingAlgorithm,
                                     broker=broker,
                                     state_filename=state_filename,
                                     realtime_bar_target=realtime_bar_target)
                             if broker else TradingAlgorithm)

    perf = TradingAlgorithmClass(
        namespace=namespace,
        data_portal=data,
        get_pipeline_loader=choose_loader,
        trading_calendar=trading_calendar,
        sim_params=SimulationParameters(start_session=start,
                                        end_session=end,
                                        trading_calendar=trading_calendar,
                                        capital_base=capital_base,
                                        emission_rate=emission_rate,
                                        data_frequency=data_frequency,
                                        execution_id=execution_id),
        metrics_set=metrics_set,
        blotter=blotter,
        benchmark_returns=benchmark_returns,
        performance_callback=performance_callback,
        stop_execution_callback=stop_execution_callback,
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
            'teardown': teardown,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run()

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the zipline magic not write any data
        perf.to_pickle(output)

    return perf
コード例 #7
0
ファイル: loader.py プロジェクト: Coding4ufn/intuition
 def surcharge_market_data(self, bm_symbol='^GSPC'):
     bm_bt, tr_bt = zipline.load_market_data(bm_symbol)
     bm_live, tr_live = self._load_live_market_data(bm_symbol)
     bm = bm_bt.append(bm_live)
     tr_bt.update(tr_live)
     return bm, tr_bt
コード例 #8
0
ファイル: loader.py プロジェクト: trodjr/intuition
 def surcharge_market_data(self, bm_symbol='^GSPC'):
     bm_bt, tr_bt = zipline.load_market_data(bm_symbol)
     bm_live, tr_live = self._load_live_market_data(bm_symbol)
     bm = bm_bt.append(bm_live)
     tr_bt.update(tr_live)
     return bm, tr_bt