コード例 #1
0
 def init_class_fixtures(cls):
     super(TestDownsampledRowwiseOperation, cls).init_class_fixtures()
     cls.pipeline_engine = SimplePipelineEngine(
         get_loader=lambda c: ExplodingObject(),
         calendar=cls.dates,
         asset_finder=cls.asset_finder,
     )
コード例 #2
0
 def init_class_fixtures(cls):
     super(TestDownsampledRowwiseOperation, cls).init_class_fixtures()
     cls.pipeline_engine = SimplePipelineEngine(
         get_loader=lambda c: ExplodingObject(),
         asset_finder=cls.asset_finder,
         default_domain=EquitySessionDomain(
             cls.dates,
             country_code=cls.ASSET_FINDER_COUNTRY_CODE,
         ),
     )
コード例 #3
0
 def init_class_fixtures(cls):
     super(WithTechnicalFactor, cls).init_class_fixtures()
     cls.ndays = ndays = 24
     cls.nassets = nassets = len(cls.ASSET_FINDER_EQUITY_SIDS)
     cls.dates = dates = pd.date_range(cls.START_DATE, periods=ndays)
     cls.assets = pd.Index(cls.asset_finder.sids)
     cls.engine = SimplePipelineEngine(
         lambda column: ExplodingObject(),
         dates,
         cls.asset_finder,
     )
     cls.asset_exists = exists = np.full((ndays, nassets), True, dtype=bool)
     cls.asset_exists_masked = masked = exists.copy()
     masked[:, -1] = False
コード例 #4
0
    def run_graph(self, graph, initial_workspace, mask=None):
        """
        Compute the given TermGraph, seeding the workspace of our engine with
        `initial_workspace`.

        Parameters
        ----------
        graph : zipline.pipeline.graph.TermGraph
            Graph to run.
        initial_workspace : dict
            Initial workspace to forward to SimplePipelineEngine.compute_chunk.
        mask : DataFrame, optional
            This is a value to pass to `initial_workspace` as the mask from
            `AssetExists()`.  Defaults to a frame of shape `self.default_shape`
            containing all True values.

        Returns
        -------
        results : dict
            Mapping from termname -> computed result.
        """
        engine = SimplePipelineEngine(
            lambda column: ExplodingObject(),
            self.nyse_sessions,
            self.asset_finder,
        )
        if mask is None:
            mask = self.default_asset_exists_mask

        dates, assets, mask_values = explode(mask)

        initial_workspace.setdefault(AssetExists(), mask_values)
        initial_workspace.setdefault(InputDates(), dates)

        return engine.compute_chunk(
            graph,
            dates,
            assets,
            initial_workspace,
        )
コード例 #5
0
    def test_duplicate_values(self):
        UNIMPORTANT_VALUE = 57

        panel = pd.Panel(
            UNIMPORTANT_VALUE,
            items=['a', 'b', 'b', 'a'],
            major_axis=['c'],
            minor_axis=['d'],
        )
        unused = ExplodingObject()

        axis_names = ['items', 'major_axis', 'minor_axis']

        for axis_order in permutations((0, 1, 2)):
            transposed = panel.transpose(*axis_order)
            with self.assertRaises(ValueError) as e:
                PanelBarReader(unused, transposed, 'daily')

            expected = (
                "Duplicate entries in Panel.{name}: ['a', 'b'].".format(
                    name=axis_names[axis_order.index(0)], ))
            self.assertEqual(str(e.exception), expected)