class PyTorchSparkEstimator(OrcaSparkEstimator): def __init__(self, model, loss, optimizer, metrics=None, model_dir=None, bigdl_type="float"): from zoo.pipeline.api.torch import TorchModel, TorchLoss, TorchOptim self.loss = loss if self.loss is None: self.loss = TorchLoss() else: self.loss = TorchLoss.from_pytorch(loss) if optimizer is None: from zoo.orca.learn.optimizers.schedule import Default optimizer = SGD(learningrate_schedule=Default()) if isinstance(optimizer, TorchOptimizer): optimizer = TorchOptim.from_pytorch(optimizer) elif isinstance(optimizer, OrcaOptimizer): optimizer = optimizer.get_optimizer() else: raise ValueError( "Only PyTorch optimizer and orca optimizer are supported") from zoo.orca.learn.metrics import Metric self.metrics = Metric.convert_metrics_list(metrics) self.log_dir = None self.app_name = None self.model_dir = model_dir self.model = TorchModel.from_pytorch(model) self.estimator = SparkEstimator(self.model, optimizer, model_dir, bigdl_type=bigdl_type) def _handle_dataframe(self, data, validation_data, feature_cols, label_cols): schema = data.schema train_rdd = data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, label_cols)) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataFrame), "validation_data should also be a " \ "DataFrame" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.map(lambda row: row_to_sample( row, schema, feature_cols, label_cols))) return train_feature_set, val_feature_set def _handle_xshards(self, data, validation_data): train_rdd = data.rdd.flatMap(xshard_to_sample) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, SparkXShards), "validation_data should be a " \ "SparkXShards" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.flatMap(xshard_to_sample)) return train_feature_set, val_feature_set def _hanle_data_loader(self, data, validation_data): train_feature_set = FeatureSet.pytorch_dataloader(data, "", "") if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataLoader) or callable(data), \ "validation_data should be a pytorch DataLoader or a callable data_creator" val_feature_set = FeatureSet.pytorch_dataloader(validation_data) return train_feature_set, val_feature_set def fit(self, data, epochs=1, batch_size=32, feature_cols=None, label_cols=None, validation_data=None, checkpoint_trigger=None): """ Train this torch model with train data. :param data: train data. It can be a XShards, Spark Dataframe, PyTorch DataLoader and PyTorch DataLoader creator function. If data is an XShards, each partition is a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param epochs: Number of epochs to train the model. Default: 1. :param batch_size: Batch size used for training. Only used when data is an XShards. Default: 32. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame. Default: None. :param label_cols: Label column name(s) of data. Only used when data is a Spark DataFrame. Default: None. :param validation_data: Validation data. XShards, PyTorch DataLoader and PyTorch DataLoader creator function are supported. If data is XShards, each partition is a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param checkpoint_trigger: Orca Trigger to set a checkpoint. :return: The trained estimator object. """ from zoo.orca.learn.trigger import Trigger end_trigger = MaxEpoch(epochs) assert batch_size > 0, "batch_size should be greater than 0" checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) if self.log_dir is not None and self.app_name is not None: self.estimator.set_tensorboard(self.log_dir, self.app_name) if validation_data: assert self.metrics is not None, "You should provide metrics when creating this " \ "estimator if you provide validation_data." if isinstance(data, SparkXShards): train_fset, val_fset = self._handle_xshards(data, validation_data) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataFrame): train_fset, val_fset = self._handle_dataframe( data, validation_data, feature_cols, label_cols) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data): train_fset, val_fset = self._hanle_data_loader( data, validation_data) self.estimator.train_minibatch(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics) else: raise ValueError( "Data and validation data should be SparkXShards, DataLoaders or " "callable data_creators but get " + data.__class__.__name__) return self def predict(self, data, batch_size=4, feature_cols=None): """ Predict input data. :param data: data to be predicted. It can be an XShards or a Spark Dataframe. If it is an XShards, each partition is a dictionary of {'x': feature}, where feature is a numpy array or a list of numpy arrays. :param batch_size: batch size used for inference. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame. Default: None. :return: predicted result. The predict result is a XShards, each partition of the XShards is a dictionary of {'prediction': result}, where result is a numpy array or a list of numpy arrays. """ from zoo.orca.learn.utils import convert_predict_rdd_to_xshard if isinstance(data, SparkXShards): from zoo.orca.data.utils import xshard_to_sample data_rdd = data.rdd.flatMap(xshard_to_sample) elif isinstance(data, DataFrame): schema = data.schema data_rdd = data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, None)) else: raise ValueError( "Data should be XShards, each element needs to be {'x': a feature " "numpy array}.") predicted_rdd = self.model.predict(data_rdd, batch_size=batch_size) if isinstance(data, SparkXShards): result = convert_predict_rdd_to_xshard(data, predicted_rdd) else: result = convert_predict_rdd_to_dataframe(data, predicted_rdd) return result def evaluate(self, data, batch_size=32, feature_cols=None, label_cols=None, validation_metrics=None): """ Evaluate model. :param data: data: evaluation data. It can be an XShards, Spark Dataframe, PyTorch DataLoader and PyTorch DataLoader creator function. If data is an XShards, each partition is a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param batch_size: Batch size used for evaluation. Only used when data is a SparkXShard. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame. Default: None. :param label_cols: Label column name(s) of data. Only used when data is a Spark DataFrame. Default: None. :param validation_metrics: Orca validation metrics to be computed on validation_data. :return: validation results. """ from zoo.orca.data.utils import xshard_to_sample assert data is not None, "validation data shouldn't be None" assert self.metrics is not None, "metrics shouldn't be None, please specify the metrics" \ " argument when creating this estimator." if isinstance(data, SparkXShards): val_feature_set = FeatureSet.sample_rdd( data.rdd.flatMap(xshard_to_sample)) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataFrame): schema = data.schema val_feature_set = FeatureSet.sample_rdd( data.rdd.map(lambda row: row_to_sample( row, schema, feature_cols, label_cols))) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data): val_feature_set = FeatureSet.pytorch_dataloader(data) result = self.estimator.evaluate_minibatch(val_feature_set, self.metrics) else: raise ValueError( "Data should be a SparkXShards, a DataLoader or a callable " "data_creator, but get " + data.__class__.__name__) return bigdl_metric_results_to_dict(result) def get_model(self): """ Get the trained PyTorch model. :return: The trained PyTorch model. """ return self.model.to_pytorch() def save(self, model_path): """ Save is not supported in SparkPyTorchEstimator. :param model_path: path to save the trained model. :return: """ raise NotImplementedError def load(self, checkpoint, loss=None): """ Load existing model or checkpoint :param checkpoint: Path to the existing model or checkpoint. :param loss: PyTorch loss function. :return: """ from zoo.orca.learn.utils import find_latest_checkpoint if loss is not None: from zoo.pipeline.api.torch import TorchLoss self.loss = TorchLoss.from_pytorch(loss) path, prefix, version = find_latest_checkpoint(checkpoint, model_type="pytorch") if path is None: raise ValueError( "Cannot find PyTorch checkpoint, please check your checkpoint path." ) self.load_orca_checkpoint(path, version=version, prefix=prefix) def load_orca_checkpoint(self, path, version, prefix=None): """ Load existing checkpoint :param path: Path to the existing checkpoint. :param version: checkpoint version, which is the suffix of model.* file, i.e., for model.4 file, the version is 4. :param prefix: optimMethod prefix, for example 'optimMethod-TorchModelf53bddcc' :return: """ import os from bigdl.nn.layer import Model from bigdl.optim.optimizer import OptimMethod assert prefix is not None, "You should provide optimMethod prefix, " \ "for example 'optimMethod-TorchModelf53bddcc'" try: self.model = Model.load( os.path.join(path, "model.{}".format(version))) optimizer = OptimMethod.load( os.path.join(path, "{}.{}".format(prefix, version))) except Exception: raise ValueError( "Cannot load PyTorch checkpoint, please check your checkpoint path " "and checkpoint type.") self.estimator = SparkEstimator(self.model, optimizer, self.model_dir) def load_latest_orca_checkpoint(self, path): """ Load latest Orca checkpoint under specified directory. :param path: directory containing Orca checkpoint files. """ self.load(checkpoint=path) def get_train_summary(self, tag=None): """ Get the scalar from model train summary Return list of summary data of [iteration_number, scalar_value, timestamp] :param tag: The string variable represents the scalar wanted """ return self.estimator.get_train_summary(tag=tag) def get_validation_summary(self, tag=None): """ Get the scalar from model validation summary Return list of summary data of [iteration_number, scalar_value, timestamp] Note: The metric and tag may not be consistent Please look up following form to pass tag parameter Left side is your metric during compile Right side is the tag you should pass 'Accuracy' | 'Top1Accuracy' 'BinaryAccuracy' | 'Top1Accuracy' 'CategoricalAccuracy' | 'Top1Accuracy' 'SparseCategoricalAccuracy' | 'Top1Accuracy' 'AUC' | 'AucScore' 'HitRatio' | 'HitRate@k' (k is Top-k) 'Loss' | 'Loss' 'MAE' | 'MAE' 'NDCG' | 'NDCG' 'TFValidationMethod' | '${name + " " + valMethod.toString()}' 'Top5Accuracy' | 'Top5Accuracy' 'TreeNNAccuracy' | 'TreeNNAccuracy()' 'MeanAveragePrecision' | 'MAP@k' (k is Top-k) (BigDL) 'MeanAveragePrecision' | 'PascalMeanAveragePrecision' (Zoo) 'StatelessMetric' | '${name}' :param tag: The string variable represents the scalar wanted """ return self.estimator.get_validation_summary(tag=tag) def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ self.estimator.clear_gradient_clipping() def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ self.estimator.set_constant_gradient_clipping(min=min, max=max) def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ self.estimator.set_l2_norm_gradient_clipping(clip_norm=clip_norm)
class PytorchSparkEstimatorWrapper(Estimator): def __init__(self, model, loss, optimizer, model_dir=None, bigdl_type="float"): from zoo.pipeline.api.torch import TorchModel, TorchLoss, TorchOptim self.loss = loss if self.loss is None: self.loss = TorchLoss() else: self.loss = TorchLoss.from_pytorch(loss) if optimizer is None: from bigdl.optim.optimizer import SGD optimizer = SGD() elif isinstance(optimizer, TorchOptimizer): optimizer = TorchOptim.from_pytorch(optimizer) self.model_dir = model_dir self.model = TorchModel.from_pytorch(model) self.estimator = SparkEstimator(self.model, optimizer, model_dir, bigdl_type=bigdl_type) def fit(self, data, epochs=1, batch_size=32, validation_data=None, validation_methods=None, checkpoint_trigger=None): from zoo.orca.data.utils import to_sample from zoo.orca.learn.metrics import Metrics from zoo.orca.learn.trigger import Trigger end_trigger = MaxEpoch(epochs) assert batch_size > 0, "batch_size should be greater than 0" validation_methods = Metrics.convert_metrics_list(validation_methods) checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) if isinstance(data, SparkXShards): train_rdd = data.rdd.flatMap(to_sample) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, SparkXShards), "validation_data should be a " \ "SparkXShards" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.flatMap(to_sample)) self.estimator.train(train_feature_set, self.loss, end_trigger, checkpoint_trigger, val_feature_set, validation_methods, batch_size) elif isinstance(data, DataLoader) or callable(data): train_feature_set = FeatureSet.pytorch_dataloader(data, "", "") if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataLoader) or callable(data), \ "validation_data should be a pytorch DataLoader or a callable data_creator" val_feature_set = FeatureSet.pytorch_dataloader( validation_data) self.estimator.train_minibatch(train_feature_set, self.loss, end_trigger, checkpoint_trigger, val_feature_set, validation_methods) else: raise ValueError( "Data and validation data should be SparkXShards, DataLoaders or " "callable data_creators but get " + data.__class__.__name__) return self def predict(self, data, **kwargs): pass def evaluate(self, data, validation_methods=None, batch_size=32): from zoo.orca.data.utils import to_sample from zoo.orca.learn.metrics import Metrics assert data is not None, "validation data shouldn't be None" validation_methods = Metrics.convert_metrics_list(validation_methods) if isinstance(data, SparkXShards): val_feature_set = FeatureSet.sample_rdd( data.rdd.flatMap(to_sample)) return self.estimator.evaluate(val_feature_set, validation_methods, batch_size) elif isinstance(data, DataLoader) or callable(data): val_feature_set = FeatureSet.pytorch_dataloader(data) return self.estimator.evaluate_minibatch(val_feature_set, validation_methods) else: raise ValueError( "Data should be a SparkXShards, a DataLoader or a callable " "data_creator, but get " + data.__class__.__name__) def get_model(self): return self.model.to_pytorch() def save(self, checkpoint): pass def load(self, checkpoint, loss=None): from zoo.orca.learn.utils import find_latest_checkpoint from bigdl.nn.layer import Model from bigdl.optim.optimizer import OptimMethod import os if loss is not None: from zoo.pipeline.api.torch import TorchLoss self.loss = TorchLoss.from_pytorch(loss) path, prefix, version = find_latest_checkpoint(checkpoint, model_type="pytorch") if path is None: raise ValueError( "Cannot find PyTorch checkpoint, please check your checkpoint path." ) try: self.model = Model.load( os.path.join(path, "model.{}".format(version))) optimizer = OptimMethod.load( os.path.join(path, "{}.{}".format(prefix, version))) except Exception: raise ValueError( "Cannot load PyTorch checkpoint, please check your checkpoint path " "and checkpoint type.") self.estimator = SparkEstimator(self.model, optimizer, self.model_dir) def shutdown(self, force=False): pass def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ self.estimator.clear_gradient_clipping() def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ self.estimator.set_constant_gradient_clipping(min=min, max=max) def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ self.estimator.set_l2_norm_gradient_clipping(clip_norm=clip_norm)
class PyTorchSparkEstimator(OrcaSparkEstimator): def __init__(self, model, loss, optimizer, metrics=None, model_dir=None, bigdl_type="float"): from zoo.pipeline.api.torch import TorchModel, TorchLoss, TorchOptim self.loss = loss if self.loss is None: self.loss = TorchLoss() else: self.loss = TorchLoss.from_pytorch(loss) if optimizer is None: from zoo.orca.learn.optimizers.schedule import Default optimizer = SGD(learningrate_schedule=Default()) if isinstance(optimizer, TorchOptimizer): optimizer = TorchOptim.from_pytorch(optimizer) elif isinstance(optimizer, OrcaOptimizer): optimizer = optimizer.get_optimizer() else: raise ValueError( "Only PyTorch optimizer and orca optimizer are supported") from zoo.orca.learn.metrics import Metrics self.metrics = Metrics.convert_metrics_list(metrics) self.log_dir = None self.app_name = None self.model_dir = model_dir self.model = TorchModel.from_pytorch(model) self.estimator = SparkEstimator(self.model, optimizer, model_dir, bigdl_type=bigdl_type) def _handle_dataframe(self, data, validation_data, feature_cols, label_cols): schema = data.schema train_rdd = data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, label_cols)) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataFrame), "validation_data should also be a " \ "DataFrame" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.map(lambda row: row_to_sample( row, schema, feature_cols, label_cols))) return train_feature_set, val_feature_set def _handle_xshards(self, data, validation_data): train_rdd = data.rdd.flatMap(xshard_to_sample) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, SparkXShards), "validation_data should be a " \ "SparkXShards" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.flatMap(xshard_to_sample)) return train_feature_set, val_feature_set def _hanle_data_loader(self, data, validation_data): train_feature_set = FeatureSet.pytorch_dataloader(data, "", "") if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataLoader) or callable(data), \ "validation_data should be a pytorch DataLoader or a callable data_creator" val_feature_set = FeatureSet.pytorch_dataloader(validation_data) return train_feature_set, val_feature_set def fit(self, data, epochs=1, batch_size=32, feature_cols=None, label_cols=None, validation_data=None, checkpoint_trigger=None): from zoo.orca.learn.trigger import Trigger end_trigger = MaxEpoch(epochs) assert batch_size > 0, "batch_size should be greater than 0" checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) if self.log_dir is not None and self.app_name is not None: self.estimator.set_tensorboard(self.log_dir, self.app_name) if validation_data: assert self.metrics is not None, "You should provide metrics when creating this " \ "estimator if you provide validation_data." if isinstance(data, SparkXShards): train_fset, val_fset = self._handle_xshards(data, validation_data) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataFrame): train_fset, val_fset = self._handle_dataframe( data, validation_data, feature_cols, label_cols) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data): train_fset, val_fset = self._hanle_data_loader( data, validation_data) self.estimator.train_minibatch(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics) else: raise ValueError( "Data and validation data should be SparkXShards, DataLoaders or " "callable data_creators but get " + data.__class__.__name__) return self def predict(self, data, batch_size=4, feature_cols=None): from zoo.orca.learn.utils import convert_predict_rdd_to_xshard if isinstance(data, SparkXShards): from zoo.orca.data.utils import xshard_to_sample data_rdd = data.rdd.flatMap(xshard_to_sample) elif isinstance(data, DataFrame): schema = data.schema data_rdd = data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, None)) else: raise ValueError( "Data should be XShards, each element needs to be {'x': a feature " "numpy array}.") predicted_rdd = self.model.predict(data_rdd, batch_size=batch_size) if isinstance(data, SparkXShards): result = convert_predict_rdd_to_xshard(data, predicted_rdd) else: result = convert_predict_rdd_to_dataframe(data, predicted_rdd) return result def evaluate(self, data, batch_size=32, feature_cols=None, label_cols=None): from zoo.orca.data.utils import xshard_to_sample assert data is not None, "validation data shouldn't be None" assert self.metrics is not None, "metrics shouldn't be None, please specify the metrics" \ " argument when creating this estimator." if isinstance(data, SparkXShards): val_feature_set = FeatureSet.sample_rdd( data.rdd.flatMap(xshard_to_sample)) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataFrame): schema = data.schema val_feature_set = FeatureSet.sample_rdd( data.rdd.map(lambda row: row_to_sample( row, schema, feature_cols, label_cols))) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data): val_feature_set = FeatureSet.pytorch_dataloader(data) result = self.estimator.evaluate_minibatch(val_feature_set, self.metrics) else: raise ValueError( "Data should be a SparkXShards, a DataLoader or a callable " "data_creator, but get " + data.__class__.__name__) return bigdl_metric_results_to_dict(result) def get_model(self): return self.model.to_pytorch() def save(self, model_path): raise NotImplementedError def load(self, checkpoint, loss=None): from zoo.orca.learn.utils import find_latest_checkpoint if loss is not None: from zoo.pipeline.api.torch import TorchLoss self.loss = TorchLoss.from_pytorch(loss) path, prefix, version = find_latest_checkpoint(checkpoint, model_type="pytorch") if path is None: raise ValueError( "Cannot find PyTorch checkpoint, please check your checkpoint path." ) self.load_orca_checkpoint(path, version=version, prefix=prefix) def load_orca_checkpoint(self, path, version, prefix=None): import os from bigdl.nn.layer import Model from bigdl.optim.optimizer import OptimMethod assert prefix is not None, "You should provide optimMethod prefix, " \ "for example 'optimMethod-TorchModelf53bddcc'" try: self.model = Model.load( os.path.join(path, "model.{}".format(version))) optimizer = OptimMethod.load( os.path.join(path, "{}.{}".format(prefix, version))) except Exception: raise ValueError( "Cannot load PyTorch checkpoint, please check your checkpoint path " "and checkpoint type.") self.estimator = SparkEstimator(self.model, optimizer, self.model_dir) def load_latest_orca_checkpoint(self, path): self.load(checkpoint=path) def get_train_summary(self, tag=None): return self.estimator.get_train_summary(tag=tag) def get_validation_summary(self, tag=None): return self.estimator.get_validation_summary(tag=tag) def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ self.estimator.clear_gradient_clipping() def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ self.estimator.set_constant_gradient_clipping(min=min, max=max) def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ self.estimator.set_l2_norm_gradient_clipping(clip_norm=clip_norm)
class PyTorchSparkEstimator(OrcaSparkEstimator): def __init__(self, model, loss, optimizer, config=None, metrics=None, model_dir=None, bigdl_type="float"): from zoo.pipeline.api.torch import TorchModel, TorchLoss, TorchOptim self.loss = loss self.model = model self.optimizer = optimizer self.config = {} if config is None else config if self.loss is None: self.loss = TorchLoss() else: self.loss = TorchLoss.from_pytorch(loss) if isinstance(self.model, types.FunctionType): self.model = self.model(self.config) if isinstance(self.optimizer, types.FunctionType): self.optimizer = self.optimizer(self.model, self.config) if self.optimizer is None: from zoo.orca.learn.optimizers.schedule import Default self.optimizer = SGD( learningrate_schedule=Default()).get_optimizer() elif isinstance(self.optimizer, TorchOptimizer): self.optimizer = TorchOptim.from_pytorch(self.optimizer) elif isinstance(self.optimizer, OrcaOptimizer): self.optimizer = self.optimizer.get_optimizer() else: raise ValueError( "Only PyTorch optimizer and orca optimizer are supported") from zoo.orca.learn.metrics import Metric self.metrics = Metric.convert_metrics_list(metrics) self.log_dir = None self.app_name = None self.model_dir = model_dir self.model = TorchModel.from_pytorch(self.model) self.estimator = SparkEstimator(self.model, self.optimizer, model_dir, bigdl_type=bigdl_type) def _handle_dataframe(self, data, validation_data, feature_cols, label_cols): schema = data.schema train_rdd = data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, label_cols)) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataFrame), "validation_data should also be a " \ "DataFrame" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.map(lambda row: row_to_sample( row, schema, feature_cols, label_cols))) return train_feature_set, val_feature_set def _handle_xshards(self, data, validation_data): train_rdd = data.rdd.flatMap(xshard_to_sample) train_feature_set = FeatureSet.sample_rdd(train_rdd) if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, SparkXShards), "validation_data should be a " \ "SparkXShards" val_feature_set = FeatureSet.sample_rdd( validation_data.rdd.flatMap(xshard_to_sample)) return train_feature_set, val_feature_set def _handle_data_loader(self, data, validation_data): train_feature_set = FeatureSet.pytorch_dataloader(data, "", "") if validation_data is None: val_feature_set = None else: assert isinstance(validation_data, DataLoader) or callable(data), \ "validation_data should be a pytorch DataLoader or a callable data_creator" val_feature_set = FeatureSet.pytorch_dataloader(validation_data) return train_feature_set, val_feature_set def fit(self, data, epochs=1, batch_size=None, feature_cols=None, label_cols=None, validation_data=None, checkpoint_trigger=None): """ Train this torch model with train data. :param data: train data. It can be a XShards, Spark Dataframe, PyTorch DataLoader and PyTorch DataLoader creator function that takes config and batch_size as argument and returns a PyTorch DataLoader for training. If data is an XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param epochs: Number of epochs to train the model. Default: 1. :param batch_size: Batch size used for training. Only used when data is an XShards. Default: 32. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param label_cols: Label column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param validation_data: Validation data. XShards, PyTorch DataLoader and PyTorch DataLoader creator function are supported. If data is XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param checkpoint_trigger: Orca Trigger to set a checkpoint. :return: The trained estimator object. """ from zoo.orca.learn.trigger import Trigger end_trigger = MaxEpoch(epochs) if isinstance(data, DataLoader): assert batch_size is None and data.batch_size > 0, "When using PyTorch Dataloader as " \ "input, you need to specify the " \ "batch size in DataLoader and " \ "don't specify batch_size " \ "in the fit method." else: assert batch_size is not None and batch_size > 0, "batch_size should be greater than 0" checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) if self.log_dir is not None and self.app_name is not None: self.estimator.set_tensorboard(self.log_dir, self.app_name) if validation_data: assert self.metrics is not None, "You should provide metrics when creating this " \ "estimator if you provide validation_data." if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': data, validation_data = process_xshards_of_pandas_dataframe( data, feature_cols, label_cols, validation_data, mode="fit") train_fset, val_fset = self._handle_xshards(data, validation_data) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataFrame): train_fset, val_fset = self._handle_dataframe( data, validation_data, feature_cols, label_cols) self.estimator.train(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data) or isinstance( data, types.FunctionType): if isinstance(data, types.FunctionType): data, validation_data = data(self.config, batch_size), validation_data( self.config, batch_size) train_fset, val_fset = self._handle_data_loader( data, validation_data) self.estimator.train_minibatch(train_fset, self.loss, end_trigger, checkpoint_trigger, val_fset, self.metrics) else: raise ValueError( "Data and validation data should be SparkXShards, DataLoaders or " "callable data_creators but get " + data.__class__.__name__) return self def predict(self, data, batch_size=4, feature_cols=None): """ Predict input data. :param data: data to be predicted. It can be an XShards or a Spark Dataframe. If it is an XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature}, where feature is a numpy array or a list of numpy arrays. :param batch_size: batch size used for inference. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :return: predicted result. The predict result is a XShards, each partition of the XShards is a dictionary of {'prediction': result}, where result is a numpy array or a list of numpy arrays. """ from zoo.orca.learn.utils import convert_predict_rdd_to_xshard if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': data = process_xshards_of_pandas_dataframe(data, feature_cols) from zoo.orca.data.utils import xshard_to_sample data_rdd = data.rdd.flatMap(xshard_to_sample) elif isinstance(data, DataFrame): schema = data.schema data_rdd = data.rdd.map( lambda row: row_to_sample(row, schema, feature_cols, None)) else: raise ValueError( "Data should be XShards, each element needs to be {'x': a feature " "numpy array}.") predicted_rdd = self.model.predict(data_rdd, batch_size=batch_size) if isinstance(data, SparkXShards): result = convert_predict_rdd_to_xshard(data, predicted_rdd) else: result = convert_predict_rdd_to_dataframe(data, predicted_rdd) return result def evaluate(self, data, batch_size=None, feature_cols=None, label_cols=None, validation_metrics=None): """ Evaluate model. :param data: data: evaluation data. It can be an XShards, Spark Dataframe, PyTorch DataLoader and PyTorch DataLoader creator function. If data is an XShards, each partition can be a Pandas DataFrame or a dictionary of {'x': feature, 'y': label}, where feature(label) is a numpy array or a list of numpy arrays. :param batch_size: Batch size used for evaluation. Only used when data is a SparkXShard. :param feature_cols: Feature column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param label_cols: Label column name(s) of data. Only used when data is a Spark DataFrame or an XShards of Pandas DataFrame. Default: None. :param validation_metrics: Orca validation metrics to be computed on validation_data. :return: validation results. """ from zoo.orca.data.utils import xshard_to_sample assert data is not None, "validation data shouldn't be None" assert self.metrics is not None, "metrics shouldn't be None, please specify the metrics" \ " argument when creating this estimator." if isinstance(data, DataLoader): assert batch_size is None and data.batch_size > 0, "When using PyTorch Dataloader as " \ "input, you need to specify the " \ "batch size in DataLoader and " \ "don't specify batch_size " \ "in the fit method." else: assert batch_size is not None and batch_size > 0, "batch_size should be greater than 0" if isinstance(data, SparkXShards): if data._get_class_name() == 'pandas.core.frame.DataFrame': data = process_xshards_of_pandas_dataframe( data, feature_cols, label_cols) val_feature_set = FeatureSet.sample_rdd( data.rdd.flatMap(xshard_to_sample)) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataFrame): schema = data.schema val_feature_set = FeatureSet.sample_rdd( data.rdd.map(lambda row: row_to_sample( row, schema, feature_cols, label_cols))) result = self.estimator.evaluate(val_feature_set, self.metrics, batch_size) elif isinstance(data, DataLoader) or callable(data) or isinstance( data, types.FunctionType): if isinstance(data, types.FunctionType): data = data(self.config, batch_size) val_feature_set = FeatureSet.pytorch_dataloader(data) result = self.estimator.evaluate_minibatch(val_feature_set, self.metrics) else: raise ValueError( "Data should be a SparkXShards, a DataLoader or a callable " "data_creator, but get " + data.__class__.__name__) return bigdl_metric_results_to_dict(result) def get_model(self): """ Get the trained PyTorch model. :return: The trained PyTorch model. """ return self.model.to_pytorch() def _get_optimizer_path(self, model_path): if "." in model_path: path_split = model_path.rsplit('.', 1) return path_split[0] + "_optim." + path_split[1] else: return model_path + "_optim" def save(self, model_path): """ Saves the Estimator state (including model and optimizer) to the provided model_path. :param model_path: path to save the model. :return: model_path """ optim_path = self._get_optimizer_path(model_path) torch.save(self.get_model().state_dict(), model_path) if self.optimizer is not None: self.optimizer.save(path=optim_path, overWrite=True) return model_path def load(self, model_path): """ Load the Estimator state (model and possibly with optimizer) from provided model_path. The model file should be generated by the save method of this estimator, or by ``torch.save(state_dict, model_path)``, where `state_dict` can be obtained by the ``state_dict()`` method of a pytorch model. :param model_path: path to the saved model. :return: """ from zoo.pipeline.api.torch import TorchModel import os try: pytorch_model = self.get_model() pytorch_model.load_state_dict(torch.load(model_path)) self.model = TorchModel.from_pytorch(pytorch_model) except Exception: raise ValueError( "Cannot load the PyTorch model. Please check your model path.") optim_path = self._get_optimizer_path(model_path) if os.path.isfile(optim_path): try: self.optimizer = OptimMethod.load(optim_path) except Exception: raise ValueError( "Cannot load the optimizer. Only `bigdl.optim.optimizer." "OptimMethod` is supported for loading.") else: self.optimizer = None self.estimator = SparkEstimator(self.model, self.optimizer, self.model_dir) def load_orca_checkpoint(self, path, version=None, prefix=None): """ Load existing checkpoint. To load a specific checkpoint, please provide both `version` and `perfix`. If `version` is None, then the latest checkpoint will be loaded. :param path: Path to the existing checkpoint (or directory containing Orca checkpoint files). :param version: checkpoint version, which is the suffix of model.* file, i.e., for modle.4 file, the version is 4. If it is None, then load the latest checkpoint. :param prefix: optimMethod prefix, for example 'optimMethod-TorchModelf53bddcc'. :return: """ import os from bigdl.nn.layer import Model from bigdl.optim.optimizer import OptimMethod from zoo.orca.learn.utils import find_latest_checkpoint from zoo.pipeline.api.torch import TorchModel if version is None: path, prefix, version = find_latest_checkpoint( path, model_type="pytorch") if path is None: raise ValueError( "Cannot find PyTorch checkpoint, please check your checkpoint" " path.") else: assert prefix is not None, "You should provide optimMethod prefix, " \ "for example 'optimMethod-TorchModelf53bddcc'" try: loaded_model = Model.load( os.path.join(path, "model.{}".format(version))) self.model = TorchModel.from_value(loaded_model.value) self.optimizer = OptimMethod.load( os.path.join(path, "{}.{}".format(prefix, version))) except Exception: raise ValueError( "Cannot load PyTorch checkpoint, please check your checkpoint path " "and checkpoint type.") self.estimator = SparkEstimator(self.model, self.optimizer, self.model_dir) def get_train_summary(self, tag=None): """ Get the scalar from model train summary. This method will return a list of summary data of [iteration_number, scalar_value, timestamp]. :param tag: The string variable represents the scalar wanted """ return self.estimator.get_train_summary(tag=tag) def get_validation_summary(self, tag=None): """ Get the scalar from model validation summary. This method will return a list of summary data of [iteration_number, scalar_value, timestamp]. Note that the metric and tag may not be consistent. Please look up following form to pass tag parameter. Left side is your metric during compile. Right side is the tag you should pass. >>> 'Accuracy' | 'Top1Accuracy' >>> 'BinaryAccuracy' | 'Top1Accuracy' >>> 'CategoricalAccuracy' | 'Top1Accuracy' >>> 'SparseCategoricalAccuracy' | 'Top1Accuracy' >>> 'AUC' | 'AucScore' >>> 'HitRatio' | 'HitRate@k' (k is Top-k) >>> 'Loss' | 'Loss' >>> 'MAE' | 'MAE' >>> 'NDCG' | 'NDCG' >>> 'TFValidationMethod' | '${name + " " + valMethod.toString()}' >>> 'Top5Accuracy' | 'Top5Accuracy' >>> 'TreeNNAccuracy' | 'TreeNNAccuracy()' >>> 'MeanAveragePrecision' | 'MAP@k' (k is Top-k) (BigDL) >>> 'MeanAveragePrecision' | 'PascalMeanAveragePrecision' (Zoo) >>> 'StatelessMetric' | '${name}' :param tag: The string variable represents the scalar wanted """ return self.estimator.get_validation_summary(tag=tag) def clear_gradient_clipping(self): """ Clear gradient clipping parameters. In this case, gradient clipping will not be applied. In order to take effect, it needs to be called before fit. :return: """ self.estimator.clear_gradient_clipping() def set_constant_gradient_clipping(self, min, max): """ Set constant gradient clipping during the training process. In order to take effect, it needs to be called before fit. :param min: The minimum value to clip by. :param max: The maximum value to clip by. :return: """ self.estimator.set_constant_gradient_clipping(min=min, max=max) def set_l2_norm_gradient_clipping(self, clip_norm): """ Clip gradient to a maximum L2-Norm during the training process. In order to take effect, it needs to be called before fit. :param clip_norm: Gradient L2-Norm threshold. :return: """ self.estimator.set_l2_norm_gradient_clipping(clip_norm=clip_norm)