コード例 #1
0
 def test_judge_match(self):
     size = 3
     regs = [[1, 5], [-1, 1], [1, 2]]
     tys = [True, True, True]
     assert Dimension2.judge_match(size, regs, tys) == True
     tys = [True, True]
     assert Dimension2.judge_match(size, regs, tys) == False
コード例 #2
0
 def test_set_regions(self):
     dim = Dimension2([(ValueType.CONTINUOUS, [1, 2], 1e-6),
                       (ValueType.CONTINUOUS, [2, 3], 1e-6)])
     dim.set_regions([[-1, 1], [-1, 1]], [True, True])
     assert dim.equal(
         Dimension2([(ValueType.CONTINUOUS, [-1, 1], 1e-6),
                     (ValueType.CONTINUOUS, [-1, 1], 1e-6)]))
コード例 #3
0
 def test_limited_space(self):
     dim1 = Dimension2([(ValueType.CONTINUOUS, [-1, 1], 1e-6),
                        (ValueType.CONTINUOUS, [-1, 1], 1e-6)])
     limited, number = dim1.limited_space()
     assert limited is False and number == 0
     dim2 = Dimension2([(ValueType.DISCRETE, [-1, 1], False),
                        (ValueType.DISCRETE, [-1, 1], False)])
     limited, number = dim2.limited_space()
     assert limited is True and number == 9
コード例 #4
0
 def test_merge_dim(self):
     dim_list1 = [(ValueType.CONTINUOUS, [1, 2], 1e-6)]
     dim_list2 = [(ValueType.CONTINUOUS, [1, 2], 1e-6),
                  (ValueType.CONTINUOUS, [2, 3], 1e-6)]
     dim1 = Dimension2(dim_list1)
     dim2 = Dimension2(dim_list2)
     dim3 = Dimension2.merge_dim(dim1, dim2)
     assert dim3.equal(
         Dimension2([(ValueType.CONTINUOUS, [1, 2], 1e-6),
                     (ValueType.CONTINUOUS, [1, 2], 1e-6),
                     (ValueType.CONTINUOUS, [2, 3], 1e-6)]))
コード例 #5
0
    def test_performance(self):
        ackley_noise_func = ackley_noise_creator(0, 0.1)
        dim_size = 100  # dimensions
        one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6)
        dim_list = [(one_dim)] * dim_size
        dim = Dimension2(dim_list)  # form up the dimension object
        objective = Objective(ackley_noise_func,
                              dim)  # form up the objective function
        budget = 20000  # 20*dim_size  # number of calls to the objective function
        # suppression=True means optimize with value suppression, which is a noise handling method
        # resampling=True means optimize with re-sampling, which is another common used noise handling method
        # non_update_allowed=500 and resample_times=100 means if the best solution doesn't change for 500 budgets,
        # the best solution will be evaluated repeatedly for 100 times
        # balance_rate is a parameter for exponential weight average of several evaluations of one sample.
        parameter = Parameter(budget=budget,
                              noise_handling=True,
                              suppression=True,
                              non_update_allowed=200,
                              resample_times=50,
                              balance_rate=0.5)

        # parameter = Parameter(budget=budget, noise_handling=True, resampling=True, resample_times=10)
        parameter.set_positive_size(5)

        sol = Opt.min(objective, parameter)
        assert sol.get_value() < 4
コード例 #6
0
ファイル: test_racos.py プロジェクト: xynmxy/ZOOpt
 def test_racos_performance2(self):
     # continuous
     dim = 100  # dimension
     one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6)
     dim_list = [(one_dim)] * dim
     objective = Objective(ackley, Dimension2(dim_list))  # setup objective
     parameter = Parameter(budget=100 * dim, sequential=False, seed=1)
     solution = ExpOpt.min(objective, parameter)[0]
     assert solution.get_value() < 0.2
     dim = 500
     dim_list = [(one_dim)] * dim
     objective = Objective(ackley, Dimension2(dim_list))  # setup objective
     parameter = Parameter(budget=10000, sequential=False, seed=1)
     sol = Opt.min(objective, parameter)
     sol.print_solution()
     assert solution.get_value() < 2
     # discrete
     # setcover
     problem = SetCover()
     dim_size = 20
     one_dim = (ValueType.DISCRETE, [0, 1], False)
     dim_list = [(one_dim)] * dim_size
     dim = Dimension2(dim_list)  # the dim is prepared by the class
     objective = Objective(problem.fx,
                           dim)  # form up the objective function
     budget = 100 * dim.get_size(
     )  # number of calls to the objective function
     parameter = Parameter(budget=budget, sequential=False, seed=777)
     sol = Opt.min(objective, parameter)
     sol.print_solution()
     assert sol.get_value() < 2
     # sphere
     dim_size = 100  # dimensions
     one_dim = (ValueType.DISCRETE, [-10, 10], True)
     dim_list = [(one_dim)] * dim_size
     dim = Dimension2(dim_list)  # form up the dimension object
     objective = Objective(sphere_discrete_order,
                           dim)  # form up the objective function
     parameter = Parameter(budget=10000, sequential=False, seed=77)
     sol = Opt.min(objective, parameter)
     sol.print_solution()
     assert sol.get_value() < 200
コード例 #7
0
ファイル: zoopt.py プロジェクト: songpengwei/ray
    def __init__(self,
                 algo="asracos",
                 budget=None,
                 dim_dict=None,
                 max_concurrent=10,
                 metric="episode_reward_mean",
                 mode="min",
                 **kwargs):

        assert budget is not None, "`budget` should not be None!"
        assert dim_dict is not None, "`dim_list` should not be None!"
        assert type(max_concurrent) is int and max_concurrent > 0
        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"
        _algo = algo.lower()
        assert _algo in ["asracos", "sracos"
                         ], "`algo` must be in ['asracos', 'sracos'] currently"

        self._max_concurrent = max_concurrent
        self._metric = metric
        if mode == "max":
            self._metric_op = -1.
        elif mode == "min":
            self._metric_op = 1.
        self._live_trial_mapping = {}

        self._dim_keys = []
        _dim_list = []
        for k in dim_dict:
            self._dim_keys.append(k)
            _dim_list.append(dim_dict[k])

        dim = Dimension2(_dim_list)
        par = Parameter(budget=budget)
        if _algo == "sracos" or _algo == "asracos":
            self.optimizer = SRacosTune(dimension=dim, parameter=par)

        self.solution_dict = {}
        self.best_solution_list = []

        super(ZOOptSearch, self).__init__(
            metric=self._metric, mode=mode, **kwargs)
コード例 #8
0
ファイル: run.py プロジェクト: AlexLiuyuren/ZOOpt_experiment
                               'objective_function/config/low_dim.ini')
    config.read(config_name, encoding='utf-8')
    print(config.sections())

    optimal_position_address = os.path.join(
        project_dir, config.get(obj_name, 'optimal_position_address'))
    dim_size = config.getint(obj_name, 'dim_size')
    dim_regs = eval(config.get(obj_name, 'dim_regs'))
    budget = config.getint(obj_name, 'budget')

    repeat = 30
    set_optimal_position(optimal_position_address)
    seed = 0
    gl.set_seed(seed)
    for i in range(repeat):
        dim = Dimension2([(ValueType.CONTINUOUS, dim_regs, 1e-6)] * dim_size)
        # dim = Dimension(dim_size, [dim_regs] * dim_size, [True] * dim_size)
        objective = Objective(lambda sol: function_dict[obj_name](sol.get_x()),
                              dim)  # form up the objective function
        parameter = Parameter(budget=budget,
                              intermediate_result=True,
                              intermediate_freq=100)
        sol = Opt.min(objective, parameter)
        append_all_epoch()
    all_epoch = np.array(get_all_epoch())
    log_address = os.path.join(project_dir, 'ZOOpt_exp/log/low_dim/')
    file_name = os.path.join(log_address,
                             '{}_{}.txt'.format(obj_name, dim_size))
    os.makedirs(log_address, exist_ok=True)
    np.savetxt(file_name, all_epoch)
    print(all_epoch.shape)
コード例 #9
0
 def test_is_discrete(self):
     dim1 = Dimension2([(ValueType.CONTINUOUS, [-1, 1], 1e-6),
                        (ValueType.DISCRETE, [-1, 1], False)])
     assert dim1.is_discrete() is False
コード例 #10
0
 def test_copy_region(self):
     dim1 = Dimension2([(ValueType.CONTINUOUS, [-1, 1], 1e-6),
                        (ValueType.CONTINUOUS, [-1, 1], 1e-6)])
     region = dim1.copy_region()
     assert region == [[-1, 1], [-1, 1]]
コード例 #11
0
 def test_deep_copy(self):
     dim1 = Dimension2([(ValueType.CONTINUOUS, [-1, 1], 1e-6),
                        (ValueType.CONTINUOUS, [-1, 1], 1e-6)])
     dim2 = dim1.deep_copy()
     assert dim1.equal(dim2)