def main(): data = readfile('data.txt') plot_data(data) # show data # metoda shlukove hladiny logging.info('metoda shlukove hladiny') cluster() # metoda retezove mapy logging.info('metoda retezove mapy') chmap() # metoda maximin logging.info('metoda maximin') maximin() # nerovnomerne binarni deleni logging.info('nerovnomerne binarni deleni') unebin() # kmeans logging.info('kmeans') kmeans() # bayesuv klasifikator logging.info('bayesuv klasifikator') bayes() # klasifikator podle minimalni vzdalenosti logging.info('klasifikator podle minimalni vzdalenosti') mindist() # klasifikator podle k-nejblizsiho souseda logging.info('klasifikator podle k-nejblizsiho souseda') nearneigh() # klasifikator s linearnimi diskriminacnimi funkcemi logging.info('klasifikator s linearnimi diskriminacnimi funkcemi') lindisc()
def main(): data = readfile('data.txt') # data = [(-3, 1), (1, 1), (-2, 0), (3, -3), (1, 2), (-2, -1)] t0 = dt.datetime.now() lvls = cluster_levels(data, 1.9) t1 = dt.datetime.now() print('cas', t1 - t0) print_clusterlvls(lvls)
def main(): data = readfile('data.txt') data = kmeans(data, 3) ross = rossenblatt(data) plot_kmeans(ross) const_incr = constant_increment(data, 0.5) plot_kmeans(const_incr) mod_const_incr = constant_increment(data, 0.5) plot_kmeans(mod_const_incr)
def main(): # data = [(-3, 0), (3, 2), (-2, 0), (3, 3), (2, 2), (3, -2), (4, -2), (3, -3)] data = readfile('data.txt') logging.info('k-means') means = kmeans(data, 3) j_kmeans = sum(criterion(means).values()) plot_kmeans(means) logging.info('Unequal binary') dist = unequal_binary(data) plot_kmeans(dist) j_binary = sum(criterion(dist).values()) logging.info('J kmeans: {}, J binary: {}'.format(j_kmeans, j_binary))
def main(): data = readfile('data.txt') processed_data1 = nearest_neighbour(data, 3) processed_data2 = knearest_neighbour(data, 3) plot_kmeans(processed_data1) plot_kmeans(processed_data2)
def main(): data = readfile('data.txt') baye = bayes(data, 3, step=0.4) plot_kmeans(baye)
def main(): data = readfile('data.txt') chmap = chain_map(data, 9) plot_chainmap(chmap)
def main(): data = readfile('data.txt') processed_data = minimal_distance(data, 3) plot_kmeans(processed_data)
def main(): data = readfile('data.txt') lvls = cluster_levels(data, 1.9) logger.info('Aglomerativni metodou byly nalezeny: {} tridy'.format(lvls))
def main(): data = readfile('data.txt') # data = [(2, -3), (3, 3), (2, 2), (-3, 1), (-1, 0), (-3, -2), (1, -2), (3, 2)] no_of_clusters = maximin(data, 0.3) print('MAXIMIN found {} clusters'.format(no_of_clusters))