예제 #1
0
# %%
import os
# os.chdir(os.path.dirname(os.path.abspath('examples.py')))
import findpeaks
print(dir(findpeaks))
print(findpeaks.__version__)

# %%
from findpeaks import findpeaks
fp = findpeaks(method="topology", denoise=None, window=3)
# X = fp.import_example("2dpeaks_image")
X = fp.import_example("2dpeaks")
results = fp.fit(X)

fp.plot_preprocessing()
fp.plot()
fp.plot_peristence()
fp.plot_mesh()


fp = findpeaks(method="mask")
X = fp.import_example()
results = fp.fit(X)

fp.plot()
fp.plot_preprocessing()
fp.plot_peristence()
fp.plot_mesh()

# %%
from findpeaks import findpeaks
예제 #2
0
    x_label = "X"

if args.y_label is not None:
    y_label = args.y_label
elif "YLabel" in header:
    y_label = headers[0]["YLabel"]
else:
    y_label = "Y"

# find limits
if args.x_max is None or args.y_max is None:
    xmax = list(map(len, x))
    ysum = list(map(np.sum, y))
    ymax = list(map(np.max, y))
    for i in range(len(x)):
        peakx = findpeaks(y[i])
        peakx = peakx[peakx != 1]
        peaky = y[i][peakx]

        for j in range(1, xmax[i], int(xmax[i]/1000) + 1):
            if np.sum(y[i][:j]) >= ysum[i] * 0.999:
                xmax[i] = j
                break

        ymax[i] = np.max(peaky) * 1.1

    xmax = max(xmax)
    ymax = max(ymax)
    if args.verbose:
        print("Automatically detected axis limits:")
        print("xmax: ", xmax)
예제 #3
0
else:
    z_label = "Z"

matrix = np.loadtxt(input_file)
input_file.close()
if args.verbose:
    print("{:d} by {:d} matrix file loaded.".format(matrix.shape[0],
                                                    matrix.shape[1]))
matrix_smooth = ndimage.gaussian_filter(matrix, sigma=2.0, order=0)

if args.x_max is None or args.y_max is None or args.z_max is None:
    # find peaks
    msum = np.sum(matrix)
    xsums = np.sum(matrix, 0)
    ysums = np.sum(matrix, 1)
    peakx = findpeaks(xsums)
    peaky = findpeaks(ysums)
    # ignore peaks at 1
    peakx = peakx[peakx != 1]
    peaky = peaky[peaky != 1]
    peakz = matrix[peaky, :][:, peakx]

    # peakxv = xsums[peakx]
    # print "peakxv: ", peakxv
    # xmax = np.max(peakx[peakxv > (msum * 0.0005)]) * 2
    # peakyv = ysums[peaky]
    # print "peakyv: ", peakyv
    # ymax = np.max(peaky[peakyv > (msum * 0.0005)]) * 2

    xmax = len(xsums)
    ymax = len(ysums)
예제 #4
0
파일: density.py 프로젝트: emmaggie/KAT
else:
    z_label = "Z"

matrix = np.loadtxt(input_file)
input_file.close()
if args.verbose:
    print("{:d} by {:d} matrix file loaded.".format(matrix.shape[0],
                                                    matrix.shape[1]))
matrix_smooth = ndimage.gaussian_filter(matrix, sigma=2.0, order=0)

if args.x_max is None or args.y_max is None or args.z_max is None:
    # find peaks
    msum = np.sum(matrix)
    xsums = np.sum(matrix, 0)
    ysums = np.sum(matrix, 1)
    peakx = findpeaks(xsums)
    peaky = findpeaks(ysums)
    # ignore peaks at 1
    peakx = peakx[peakx != 1]
    peaky = peaky[peaky != 1]
    peakz = matrix[peaky,:][:,peakx]

    # peakxv = xsums[peakx]
    # print "peakxv: ", peakxv
    # xmax = np.max(peakx[peakxv > (msum * 0.0005)]) * 2
    # peakyv = ysums[peaky]
    # print "peakyv: ", peakyv
    # ymax = np.max(peaky[peakyv > (msum * 0.0005)]) * 2

    xmax = len(xsums)
    ymax = len(ysums)
예제 #5
0
    x_label = "X"

if args.y_label is not None:
    y_label = args.y_label
elif "YLabel" in header:
    y_label = headers[0]["YLabel"]
else:
    y_label = "Y"

# find limits
if args.x_max is None or args.y_max is None:
    xmax = list(map(len, x))
    ysum = list(map(np.sum, y))
    ymax = list(map(np.max, y))
    for i in range(len(x)):
        peakx = findpeaks(y[i])
        peakx = peakx[peakx != 1]
        peaky = y[i][peakx]

        for j in range(1, xmax[i], int(xmax[i] / 1000) + 1):
            if np.sum(y[i][:j]) >= ysum[i] * 0.999:
                xmax[i] = j
                break

        ymax[i] = np.max(peaky) * 1.1

    xmax = max(xmax)
    ymax = max(ymax)
    if args.verbose:
        print("Automatically detected axis limits:")
        print("xmax: ", xmax)
예제 #6
0
파일: spectra-cn.py 프로젝트: emmaggie/KAT
    xamount = 0.65
else:
    xamount = 0.99

# leave only coverage levels we are interested in
last_column = np.transpose(np.matrix(np.sum(matrix[:,(mincov+covbands):], 1)))
matrix = np.concatenate([matrix[:,mincov:(mincov+covbands)], last_column], 1)

# find limits
if args.x_max is None or args.y_max is None:
    totals = np.squeeze(np.asarray(np.sum(matrix, 1)))
    xmax = len(totals) - 1
    ysum = np.sum(totals)
    ymax = np.max(totals)

    peakx = findpeaks(totals)
    peakx = peakx[peakx != 1]
    peaky = totals[peakx]

    for i in range(1, xmax, int(xmax/100) + 1):
        if np.sum(totals[:i]) >= ysum * xamount:
            xmax = i
            break
    ymax = np.max(peaky) * 1.1
    if args.verbose:
        print("Automatically detected axis limits:")
        print("xmax: ", xmax)
        print("ymax: ", ymax)

if args.x_max is not None:
    xmax = args.x_max
예제 #7
0
    xamount = 0.99

# leave only coverage levels we are interested in
last_column = np.transpose(
    np.matrix(np.sum(matrix[:, (mincov + covbands):], 1)))
matrix = np.concatenate([matrix[:, mincov:(mincov + covbands)], last_column],
                        1)

# find limits
if args.x_max is None or args.y_max is None:
    totals = np.squeeze(np.asarray(np.sum(matrix, 1)))
    xmax = len(totals) - 1
    ysum = np.sum(totals)
    ymax = np.max(totals)

    peakx = findpeaks(totals)
    peakx = peakx[peakx != 1]
    peaky = totals[peakx]

    for i in range(1, xmax, int(xmax / 100) + 1):
        if np.sum(totals[:i]) >= ysum * xamount:
            xmax = i
            break
    ymax = np.max(peaky) * 1.1
    if args.verbose:
        print("Automatically detected axis limits:")
        print("xmax: ", xmax)
        print("ymax: ", ymax)

if args.x_max is not None:
    xmax = args.x_max