def report_status_selection(selection): [dataset, features] = parse_theme(selection) [known_dataset, known_targets, unk] = split_dataset(dataset, targets) feats = feature_context(known_dataset, known_targets, features) print selection print feats print 'Nr selected features %d' % len(feats) print 'Nr total features %d' % len(features) print 'Features eliminated %s' % set(features).difference(feats) return feats
def thematic_data_from_feature_selection(orig_targets, theme, target): [dataset, features] = parse_theme(theme) [known_dataset, known_targets, unk] = split_dataset(dataset, orig_targets) nr_times = int(math.floor(TOP_FEATURES_PERCENTAGE_THRESHOLD * len(features))) known_targets = np.asarray(known_targets) ssa_features = select_proxy_features(theme, target, nr_times) sf = SelectedFeatures(known_dataset, known_targets, ssa_features, features) print '####### %s FEATURES ####### %d %s' % (theme, len(ssa_features), str(ssa_features)) return sf.extract_data_from_selected_features(), known_targets
def cv(theme, percentage, current_svm): [dataset, features] = parse_theme(theme) [known_dataset, known_targets, unk] = split_dataset(dataset, targets) known_targets = np.asarray(known_targets) # cv_features = features_cross_validation(known_dataset, known_targets, features, current_svm) # selected_features = select_final_features_from_cv(cv_features, percentage) selected_features = select_features(percentage, theme) sf = SelectedFeatures(known_dataset, known_targets, selected_features, features) combined_dataset = sf.extract_data_from_selected_features() std = StandardizedData(known_targets, combined_dataset) known_dataset_scaled, known_targets = std.split_and_standardize_dataset() print '####### FEATURES ####### %d \n %s' % (len(selected_features), str(selected_features)) return cross_validation(np.array(known_dataset_scaled), known_targets, ids, current_svm)
def thematic_data_from_feature_selection(orig_targets, theme, percentage): [dataset, features] = parse_theme(theme) [known_dataset, known_targets, unk] = split_dataset(dataset, orig_targets) known_targets = np.asarray(known_targets) # these come from feature_selection_cv # commented out because they were saved to decrease computation time # cv_features = features_cross_validation(known_dataset, known_targets, features) # selected_features = select_final_features_from_cv(cv_features, percentage) selected_features = select_features(percentage, theme) sf = SelectedFeatures(known_dataset, known_targets, selected_features, features) print '####### %s FEATURES ####### %d %s' % (theme, len(selected_features), str(selected_features)) return sf.extract_data_from_selected_features(), known_targets
import sys sys.path.insert(0, 'utils/') from load_data import * from project_data import * from parse_theme import * from split_dataset import * import numpy as np if __name__ == "__main__": spreadsheet = Spreadsheet(project_data_file) data = Data(spreadsheet) targets = data.targets [dataset, features] = parse_theme('all') [known_dataset, known_targets, unk] = split_dataset(dataset, targets) print 'NEG %d' % len([x for x in known_targets if x==0]) print 'POS %d' % len([x for x in known_targets if x==1]) print 'HIGHVAL %d' % len([x for x in known_targets if x==1]) print 'CIVIL %d' % len([x for x in known_targets if x==2])
def split_dataset(dataset, targets): unknowns = [] known_dataset = [] known_targets = [] for i in range(0, len(targets)): if targets[i] == 0: unknowns.append(dataset[i]) else: known_dataset.append(dataset[i]) known_targets.append(targets[i]) return [np.array(known_dataset), known_targets, np.array(unknowns)] def decision_tree(dataset, targets): [known_dataset, known_targets, unknowns, ] = split_dataset(dataset, targets) model = DecisionTreeClassifier(criterion='entropy') model.fit(known_dataset, known_targets) print 'Model score: %f' % model.score(known_dataset, known_targets) print model.feature_importances_ with open("tree.dot", 'w') as f: f = export_graphviz(model, out_file=f) ### need to dot -Tpdf tree.dot -o tree.pdf if __name__ == "__main__": spreadsheet = Spreadsheet(project_data_file) data = Data(spreadsheet) targets = data.targets [dataset, features] = parse_theme(sys.argv[1]) decision_tree(dataset, targets)
print 'Civil recall %f' % cr print 'Civil f1 %f' % cf return error_rate, f1, (hp, hr, hf), (cp, cr, cf) if __name__ == "__main__": training_spreadsheet = Spreadsheet(project_data_file) training_data = Data(training_spreadsheet) training_targets = training_data.targets testing_spreadsheet = Spreadsheet(addendum_data_file, upsampling=False) testing_data = Data(testing_spreadsheet, upsampling=False) testing_targets = testing_data.targets [training_data, features] = parse_theme('all') [testing_data, feats] = parse_theme_from_file('all', addendum_data_file) assert features == feats [training_data, training_targets, unk] = split_dataset(training_data, training_targets) selected_features = single_features_90 sf = SelectedFeatures(training_data, training_targets, selected_features, features) training_data = sf.extract_data_from_selected_features() sf = SelectedFeatures(testing_data, testing_targets, selected_features, features) testing_data = sf.extract_data_from_selected_features() # standardize dataset - Gaussian with zero mean and unit variance scaler = StandardScaler() testing_data = replace_missings(testing_data)
def get_known_data_from_theme(self, theme): [theme_dataset, theme_features] = parse_theme(theme) [known_dataset, known_targets, unk] = split_dataset(theme_dataset, self.targets) known_targets = np.asarray(known_targets) return [known_dataset, known_targets]
Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) if __name__ == "__main__": spreadsheet = Spreadsheet(project_data_file) data = Data(spreadsheet) targets = data.targets ids = data.ids theme = raw_input("Theme.\n") percentage = float(raw_input("Percentage as float.\n")) [dataset, features] = parse_theme(theme) [known_dataset, known_targets, unk] = split_dataset(dataset, targets) known_targets = np.asarray(known_targets) selected_features = select_features(percentage, theme) sf = SelectedFeatures(known_dataset, known_targets, selected_features, features) dataset = sf.extract_data_from_selected_features() dataset = preprocessing.scale(dataset) C_range = np.arange(0.1, 9, 0.1) gamma_range = np.arange(0.1, 9, 0.1) param_grid = dict(gamma=gamma_range, C=C_range) # cv = StratifiedShuffleSplit(known_targets, random_state=42) cv = StratifiedKFold(known_targets, n_folds=10) grid = GridSearchCV(SVC(class_weight='auto'), param_grid=param_grid, cv=cv, scoring='f1')