def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ train_inputs, train_targets = load_train() valid_inputs, valid_targets = load_valid() test_inputs, test_targets = load_test() # add your code here (it should be less than 10 lines) self = NaiveBayesClassifier() self.train(train_inputs, train_targets) test_prediction = self.predict(test_inputs) valid_accuracy = self.compute_accuracy(valid_inputs, valid_targets) test_accuracy = self.compute_accuracy(test_inputs, test_targets) print "valid accuracy: ", valid_accuracy, "\n test accuracy: ", test_accuracy print((self.mean)) plot_digits(self.mean) plt.savefig("2.4 mean.png") plt.clf() plot_digits(self.var) plt.savefig("2.4 variance.png") plt.clf()
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ nbc = NaiveBayesClassifier() nbc.train(load_train()[0], load_train()[1]) print 'Training accuracy: %.4f Test accuracy: %.4f' % ( nbc.compute_accuracy(load_train()[0], load_train()[1]), nbc.compute_accuracy(load_test()[0], load_test()[1])) plot_digits(nbc.mean) plot_digits(nbc.var) '''
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ train_inputs, train_targets = load_train() test_inputs, test_targets = load_test() # add your code here (it should be less than 10 lines) NB = NaiveBayesClassifier() NB.train(train_inputs, train_targets) print(NB.compute_accuracy(train_inputs, train_targets)) print(NB.compute_accuracy(test_inputs, test_targets)) plot_digits(NB.mean) plot_digits(NB.var)
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ nbc = NaiveBayesClassifier() nbc.train(load_train()[0],load_train()[1]) print 'Training accuracy: %.4f Test accuracy: %.4f' % (nbc.compute_accuracy(load_train()[0],load_train()[1]), nbc.compute_accuracy(load_test()[0],load_test()[1])) plot_digits(nbc.mean) plot_digits(nbc.var) '''
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ train_inputs, train_targets = load_train() test_inputs, test_targets = load_test() nbc = NaiveBayesClassifier() nbc.train(train_inputs, train_targets) acc = nbc.compute_accuracy(test_inputs, test_targets) print "the accuracy is {}".format(acc) plot_digits(nbc.mean) plot_digits(nbc.var)
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ train_inputs, train_targets = load_train() test_inputs, test_targets = load_test() my_model = NaiveBayesClassifier() my_model.train(train_inputs, train_targets) print "training accuracy: %.1f%%\ntest accuracy %.1f%%" % \ (100.0*my_model.compute_accuracy(train_inputs, train_targets), \ 100.0*my_model.compute_accuracy(test_inputs, test_targets)) plot_digits( np.concatenate((my_model.mean, my_model.var), axis=0) )
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ train_inputs, train_targets = load_train() test_inputs, test_targets = load_test() # add your code here (it should be less than 10 lines) classifier = NaiveBayesClassifier() while (not classifier.model_learned): classifier.train(train_inputs, train_targets) print 'Training accuracy: ', classifier.compute_accuracy(train_inputs, train_targets) print 'Test accuracy: ', classifier.compute_accuracy(test_inputs, test_targets) plot_digits(classifier.mean)
def main(): """ Learn a Naive Bayes classifier on the digit dataset, evaluate its performance on training and test sets, then visualize the mean and variance for each class. """ train_inputs, train_targets = load_train() test_inputs, test_targets = load_test() # add your code here (it should be less than 10 lines) nbc = NaiveBayesClassifier() nbc.train(train_inputs, train_targets) print nbc.compute_accuracy(test_inputs, test_targets) print nbc.compute_accuracy(train_inputs, train_targets) plot_digits(nbc.mean.reshape((2,784))) plot_digits(nbc.var.reshape((2,784)))