def getRelativeAcc(): stockName = request.args.get('s') var=stockName old_stdout = sys.stdout sys.stdout = open(os.devnull, "w") if var != 'null': # ONLY PRECED IF WE HAVE A COMPANY timeBegin=2010 totalDataCurrent=Fetching.fetchDataToday(var,timeBegin) # This gets all the data from the start year to 3 days ago (give or take a work day) googData=Fetching.fetchGoogData(var) # Fetch Todays data from google finance Prediction_Data=Fetching.fetchDataSpec(var,(datetime.now()+timedelta(days=-45))) # Get the data from just the past month for the prediciton part Prediction_Data_Length=len(Prediction_Data.High) # Lenght of the predictin Data to save the recalc of it Coefficients=LinearAlgebra.coeffcients_Generator(LinearAlgebra.makeXVals_Matrix(10,timeBegin,Prediction_Data_Length),LinearAlgebra.makeY_Matrix(Prediction_Data.Low)) #coeffcients for prediction fucntion a0-a10 Prediction_Model=LinearAlgebra.makeOutY(Coefficients,Prediction_Data_Length,timeBegin,totalDataCurrent.High,googData) # Gets Prediciton Model or scatter of predicted points these points are also normalized ret = str(ArrayNCalc.CalculateRelativeACC(Prediction_Model,Prediction_Data.High)) sys.stdout.close() sys.stdout = old_stdout return "The relative accuracy is: " + ret + "%" else: sys.stdout.close() sys.stdout = old_stdout return ""
def getRelativeAcc(): stockName = request.args.get('s') var=stockName old_stdout = sys.stdout sys.stdout = open(os.devnull, "w") if var != 'null': # ONLY PRECED IF WE HAVE A COMPANY timeBegin=2010 Coefficients = numpy.zeros(shape =(11,1)) totalDataCurrent=Fetching.fetchDataToday(var,timeBegin) # This gets all the data from the start year to 3 days ago (give or take a work day) googData=Fetching.fetchGoogData(var) # Fetch Todays data from google finance Prediction_Data=Fetching.fetchDataSpec(var,(datetime.now()+timedelta(days=-45))) # Get the data from just the past month for the prediciton part Prediction_Data_Length=len(Prediction_Data.High) # Lenght of the predictin Data to save the recalc of it #if Cache2.Search(var) ==0: Coefficients=LinearAlgebra.coefficients_Generator(LinearAlgebra.makeXVals_Matrix(10,timeBegin,Prediction_Data_Length),LinearAlgebra.makeY_Matrix(Prediction_Data.Low)) #coeffcients for prediction fucntion a0-a10 #Cache2.Cache_Predictions(var,Coefficients) # after calculating store the data in cache #else: #Coefficients = Cache2.Fetch_Cache(var) # fetch from cache if the company data is stored and it's recent ( less than 3 days from prediction) Prediction_Model=LinearAlgebra.makeOutY(Coefficients,Prediction_Data_Length,timeBegin,totalDataCurrent.High,googData) # Gets Prediciton Model or scatter of predicted points these points are also normalized ret = str(ArrayNCalc.CalculateRelativeACC(Prediction_Model,Prediction_Data.High)) sys.stdout.close() sys.stdout = old_stdout return "The relative error is: " + ret + "%" else: sys.stdout.close() sys.stdout = old_stdout return ""