def plotmask(maskwoutput=None, maxr=None, xray_image=None, position_matrix=None): """ Plots the mask metrics allowing for evaluation of mask quality """ # highper,lowper,totalper, mask, imask,StatsA=maskwoutput highper, lowper, totalper, mask, imask = maskwoutput # May need matplotlib help from Tom on this plt.ioff() plt.clf() # plot the graph of how the mask depends on radial distance # TODO: use Q instead of r in the final product? plt.plot(np.arange(0, maxr + 1, 1), highper[:], '-', np.arange(0, maxr + 1, 1), lowper[:], 'o', np.arange(0, maxr + 1, 1), totalper[:], '^') plt.show() # Plot the mask itself # plot the overlay of the mask and the image mask = plt.imshow(mask) plt.show() imagemask = plt.imshow(xray_image * imask) plt.show() t = np.arange(0, maxr, 1) plt.plot(t, Calculate.mean1d(xray_image, position_matrix=position_matrix * imask, step=1), 'b', # t, Median1D(xray_image, max=maxr, step=1, position_matrix=position_matrix*imask), 'r',\ # t,Median1D(xray_image, max=maxr, step=1, position_matrix=position_matrix*imask)-Mean1D(xray_image, max=maxr, step=1, position_matrix=position_matrix*imask) ) plt.show() oldstd = np.sqrt( Calculate.variance1d(xray_image, position_matrix=position_matrix, max=maxr, step=1)) newstd = np.sqrt(Calculate.variance1d(xray_image, position_matrix=position_matrix * imask, max=maxr, step=1)) plt.plot(t, oldstd, 'b', t, newstd, 'r', t, oldstd - newstd, 'g') plt.show()
def tif_to_iq( # Calibration info poni_file=None, dspace_file=None, detector=None, calibration_imagefile=None, wavelength=None, # image info image_path=None, out_ending='', # Correction info solid=False, pol=True, polarization=0.95, # old_files info generate_mask=False, mask_file=None, initial_m=None, # integration info space='Q', resolution=None, average_method='median', plot_verbose=False): """ Takes TIFF images to CHI files, including masking, integrating, and CHI writing Parameters ---------- poni_file: str Location of poni file, a detector geometry file produced by pyFAI. If none is given a GUI prompt will ask for the file. dspace_file : str Location of the calibrant d-spacing file. This is used to generate the poni file if no poni file is loaded. detector: str Name of the detector. This is used to generate the poni file if no poni file is loaded. calibration_imagefile : str Location of the calibration image. This is used to generate the poni file if no poni file is loaded wavelength: float The wavelength of light in angstrom. This is used to generate the poni file if no poni file is loaded. image_path: str or list of str or tuple of str The image(s) to be masked and integrated. If more than one image is passed via a list or tuple, sum the images together before proceeding. out_ending: str The ending to append to the output file name before the extension solid: bool If true, apply solid angle correction as calculated by pyFAI, else do not pol: bool If true, apply polarization angle correction polarization: float The polarization of the beam used in the polarization correction generate_mask: bool If true, generate mask via mask writing algorithum mask_file: str Location of mask file initial_m: float Initial guess at ring threshold mask scale factor space: {'Q'} Eventually will support TTH as well resolution: The resolution in Q or TTH of the detector average_method: str or function The function to use in binned statistics to calculate the average plot_verbose: bool If true, generate a bunch of plots related to statistics of the rings Returns ------- str: The name of the chi file str: The name of the mask, if generated """ # load the calibration file/calibrate resolution = resolution if resolution is not None else .02 a = IO.calibrate(poni_file, calibration_imagefile, dspace_file, wavelength, detector) # load image xray_image, bulk_image_path_no_ext, image_path = IO.loadimage(image_path) # mask image, expect out an array of 1s and 0s which is the mask, if the # mask is 0 then mask that pixel mask_array = None if generate_mask is True: """This should handle all mask writing functions including binning, applying criteria, plotting, and writing the mask out as a numpy array where masked pixels are zero. This should also give the option to combine the calculated mask with a previous user generated mask.""" mask_array = Calculate.write_mask(xray_image, a, mask_file, initial_m, resolution) # write mask to FIT2D file for later use mask_file_name = IO.fit2d_save(mask_array, bulk_image_path_no_ext) elif mask_file is not None: # LOAD THE MASK mask_array = IO.loadmask(mask_file) # mask_array = np.abs(mask_array-1) if mask_array is None: mask_array = np.ones(np.shape(xray_image)) if plot_verbose: plt.imshow(mask_array, cmap='cubehelix'), plt.colorbar() plt.savefig('/home/christopher/mask.png', bbox_inches='tight', transparent=True) plt.show() plt.imshow(mask_array*xray_image, cmap='cubehelix'), plt.colorbar() plt.show() # correct for corrections corrected_image = Calculate.corrections(xray_image, geometry_object=a, solid=solid, pol=pol, polarization_factor=polarization) position_matrix = None # TODO: Add options for tth if space == 'Q': position_matrix = a.qArray(np.shape(xray_image)) / 10 max_position = np.max(position_matrix) masked_position = position_matrix * mask_array # Integrate using the global average independant_out_array = np.arange(0, max_position + resolution, resolution) integrated = Calculate.statistics1d(corrected_image, position_matrix=masked_position, max=max_position, step=resolution, statistic=average_method) integrated[np.isnan(integrated)] = 0 uncertainty_array = np.sqrt( Calculate.variance1d(corrected_image, position_matrix=masked_position, max=max_position, step=resolution)) uncertainty_array[np.isnan(uncertainty_array)] = 0 if plot_verbose is True: no_mask_integrated = Calculate.statistics1d(corrected_image, position_matrix=position_matrix, max=max_position, step=resolution, statistic=average_method) integrated_mean = Calculate.statistics1d(corrected_image, position_matrix=masked_position, max=max_position, step=resolution, statistic='mean') fig, ax = plt.subplots() ax.plot(independant_out_array, integrated, 'g', label='Median I[Q]') ax.plot(independant_out_array, integrated_mean, 'b', label='Mean I[Q]') ax.plot(independant_out_array, ((integrated - integrated_mean)/(( integrated+integrated_mean)/2))*10e6, 'k', label='((Median-Mean)/(' 'Median+Mean)/2)x10^6') ax.legend(loc='upper right') plt.xlabel('Q (1/A)') plt.ylabel('Raw Counts') plt.savefig('/home/christopher/integrator.png', bbox_inches='tight', transparent=True) plt.show() no_mask_uncertainty_percent_array = np.sqrt( Calculate.variance1d(corrected_image, position_matrix=position_matrix, max=max_position, step=resolution)) / no_mask_integrated fig, ax = plt.subplots() ax.plot(independant_out_array, integrated, 'g', label='I[Q]') ax.plot(independant_out_array, no_mask_integrated, 'k', label='No ' 'old_files I[Q]') ax.plot(independant_out_array, integrated - no_mask_integrated, 'r', label='Difference') legend = ax.legend(loc='upper right') plt.show() old_settings = np.seterr(divide='ignore') uncertainty_percent_array = uncertainty_array / integrated uncertainty_percent_array[np.isnan(uncertainty_percent_array)] = 0 np.seterr(**old_settings) fig, ax = plt.subplots() ax.plot(independant_out_array, uncertainty_percent_array * 100, 'g', label='Sigma I[Q]') plt.xlabel('Q (1/A)') plt.ylabel('% uncertainty') legend = ax.legend(loc='upper right') plt.show() ring_std = Calculate.statistics1d(corrected_image, position_matrix=masked_position, max=max_position, step=resolution, statistic=np.std) / integrated ring_std_no_mask = Calculate.statistics1d(corrected_image, position_matrix=position_matrix, max=max_position, step=resolution, statistic=np.std) / no_mask_integrated ring_s = Calculate.statistics1d(corrected_image, position_matrix=masked_position, max=max_position, step=resolution, statistic=stats.skew) ring_s_no_mask = Calculate.statistics1d(corrected_image, position_matrix=position_matrix, max=max_position, step=resolution, statistic=stats.skew) fig, ax = plt.subplots() ax.plot(independant_out_array, ring_std, 'g', label='Ring Standard Deviation') ax.plot(independant_out_array, ring_std_no_mask, 'b', label='Ring Standard Deviation No old_files') legend = ax.legend(loc='upper right') plt.show() fig, ax = plt.subplots() ax.plot(independant_out_array, ring_s, 'g', label='Ring Skew') ax.plot(independant_out_array, ring_s_no_mask, 'b', label='Ring Skew No old_files') legend = ax.legend(loc='upper right') plt.show() # plt.plot(independant_out_array, test_uncertainty / integrated * 100) # plt.show() plt.plot( independant_out_array, integrated, 'g', independant_out_array, integrated - uncertainty_array, 'b', independant_out_array, integrated + uncertainty_array, 'r' ) plt.show() # plt.plot( # independant_out_array, integrated, 'g', # independant_out_array, integrated - test_uncertainty, 'b', # independant_out_array, integrated + test_uncertainty, 'r' # ) # plt.show() # Save file as chi file with uncertainties out_array = np.c_[independant_out_array, integrated, uncertainty_array] # print out_array.shape chi_filename = os.path.splitext(bulk_image_path_no_ext)[0] + out_ending out_file_name = IO.save_chi(out_array, a, chi_filename, mask_file, image_path) if generate_mask is True: return out_file_name, mask_file_name return out_file_name