type=float, help='the ratio/percentage of points selected to be labelled (0.01=1%, ' '0.05=5%, 0.1=10%, 1=100%)[default: 0.01]', default=0.01) args = parser.parse_args() if args.GPU != -1: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.GPU) #### Parameters Model = 'DGCNN_RandomSamp' # m = 1 # the ratio of points selected to be labelled ##### Load Training/Testing Data # Loader = IO.ShapeNetIO('../Dataset/ShapeNet',batchsize = args.batchsize) Loader = IO.ShapeNetIO('/home/xuxun/Dropbox/Dataset/ShapeNet', batchsize=args.batchsize) Loader.LoadTestFiles() ##### Evaluation Object Eval = Evaluation.ShapeNetEval() ## Number of categories PartNum = Loader.NUM_PART_CATS output_dim = PartNum ShapeCatNum = Loader.NUM_CATEGORIES #### Save Directories dt = str(datetime.now().strftime("%Y%m%d")) BASE_PATH = os.path.expanduser('../Results/{}/ShapeNet/'.format(dt)) SUMMARY_PATH = os.path.join(BASE_PATH, Model, 'Summary_m-{:.3f}'.format(args.m))
default=0.01) parser.add_argument('--log_name', type=str, help='log_name', default='gary') args = parser.parse_args() if args.GPU != -1: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.GPU) #### Parameters Model = 'DGCNN_RandomSamp' # m = 1 # the ratio of points selected to be labelled ##### Load Training/Testing Data # Loader = IO.ShapeNetIO('../Dataset/ShapeNet',batchsize = args.batchsize) Loader = IO.ShapeNetIO(os.path.abspath('./Dataset/ShapeNet'), batchsize=args.batchsize) Loader.LoadTestFiles() ##### Evaluation Object Eval = Evaluation.ShapeNetEval() ## Number of categories PartNum = Loader.NUM_PART_CATS output_dim = PartNum ShapeCatNum = Loader.NUM_CATEGORIES #### Save Directories #dt = str(datetime.now().strftime("%Y%m%d")) BASE_PATH = os.path.expanduser( os.path.abspath('./Results/{}/ShapeNet/').format(args.log_name)) SUMMARY_PATH = os.path.join(BASE_PATH, Model,
default='Plain') parser.add_argument( '--Network', '-net', type=str, help='Network used for training the network [default: DGCNN]' ' [options: DGCNN, PointNet++(not supported yet)]', default='DGCNN') args = parser.parse_args() ##### Set specified GPU to be active if args.GPU != -1: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.GPU) ##### Load Training/Testing Data Loader = IO.ShapeNetIO('./Dataset/ShapeNet', batchsize=args.batchsize) Loader.LoadTestFiles() ##### Evaluation Object Eval = Evaluation.ShapeNetEval() ## Number of categories PartNum = Loader.NUM_PART_CATS output_dim = PartNum ShapeCatNum = Loader.NUM_CATEGORIES #### Save Directories dt = '2020-05-20_13-16-50' BASE_PATH = os.path.expanduser('./Results/ShapeNet/{}_sty-{}_m-{}_{}'.format( args.Network, args.Style, args.m, dt)) SUMMARY_PATH = os.path.join(BASE_PATH, 'Summary')