예제 #1
0
def predict():
    """
    An example of how to load a trained model and use it
    to predict labels.
    """
    # load the saved model
    classifier = pickle.load(open("best_model.p", "rb"))

    # compile a predictor function
    predict_model = theano.function(
        inputs=[classifier.input],
        outputs=classifier.y_pred)

    # We can test it on some examples from test test
    dataset = 'mnist_train.csv'
    datasets = DataLoader.load_kaggle_mnist(dataset)

    test_set_x, test_set_y = datasets[2]
    print(type(test_set_x))
    print(type(test_set_y))
    test_set_x = test_set_x.get_value()
    test_set_y = test_set_y.eval()


    predicted_values = predict_model(test_set_x[20:30])
    print("Sample Neural Prediction")
    print ("Predicted values for the first 20 examples in test set:")
    print(predicted_values)
    print ("The actual values are")
    print(test_set_y[20:30])
예제 #2
0
파일: svm.py 프로젝트: hariravi/KaggleMLYH
def predict_main(classifier_pickle):
    data = DataLoader.load_kaggle_mnist("mnist_train.csv", neural=False)
    X = numpy.array(data[2][0])
    X = X/255.0*2 - 1
    Y = numpy.array(data[2][1])
    predictor = MLutil.Predictor(classifier_pickle, 'SVM')
    predicted_values = predictor.make_prediction(X)

    predAnalysis = MLutil.PredictionAccuracies(predicted_values, Y)
    print(predAnalysis.get_misclass_rate())
    print(predAnalysis.get_indicies_misclassifications())

    pickle.dump(predAnalysis.get_indicies_misclassifications(), open("svm_indicies.p", "wb"))
    return predAnalysis.get_indicies_misclassifications()
예제 #3
0
def predict_main(classifier_pickle):
    print("This functions is being called")
    datasets = DataLoader.load_kaggle_mnist("mnist_train.csv")
    test_set_x, test_set_y = datasets[2]
    test_set_x = test_set_x.get_value()
    test_set_y = test_set_y.eval()

    predictor = MLutil.Predictor(classifier_pickle, 'DNN')
    predicted_values = predictor.make_prediction(test_set_x)

    predAnalysis = MLutil.PredictionAccuracies(predicted_values, test_set_y)
    print(predAnalysis.get_misclass_rate())
    print(predAnalysis.get_indicies_misclassifications())

    pickle.dump(predAnalysis.get_indicies_misclassifications(), open("neural_indicies.p", "wb"))
    return predAnalysis.get_indicies_misclassifications()
예제 #4
0
파일: svm.py 프로젝트: hariravi/KaggleMLYH
def svm_main(dataset, pickle_model):
    data = DataLoader.load_kaggle_mnist(dataset, neural=False)
    classifier = SVM()
    start = time.time()
    print("Fitting the svm")
    X = numpy.array(data[0][0])
    X = X/255.0*2 - 1
    print(X)
    Y = numpy.array(data[0][1])
    print(len(X))
    print(len(Y))
    del data
    classifier.fit_multi(X, Y)
    fin = time.time() - start
    print("Awesome, the SVM has been fit, only took {0} seconds".format(fin))
    pickle.dump(classifier, open(pickle_model, "wb"))
예제 #5
0
def validation_analysis(learning_rate=.001, L1_reg=0.00, L2_reg=0.0001, n_epochs=100,
             dataset='mnist_train.csv', batch_size=20, n_hidden=300, num_layers = 2, mlp_in = 784, mlp_out = 10):
    """
    Main loop for the mlp

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to appropriate dataset

    :type batch_size: int
    :param batch_size: number of entries per mini-batch

    :type n_hidden: int
    :param n_hidden: number of entries per hidden layer

    :type num_layers: int
    :param num_layers: number of hidden layers

    :type mlp_in: int 
    :param mlp_in: dimension of data loaded from dataset

    :type mlp_out: int
    :param mlp_out: number of classes in dataset


   """
    # Load in the data   
    datasets = DataLoader.load_kaggle_mnist(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = math.floor(train_set_x.get_value(borrow=True).shape[0] / batch_size)
    n_valid_batches = math.floor(valid_set_x.get_value(borrow=True).shape[0] / batch_size)
    n_test_batches = math.floor(test_set_x.get_value(borrow=True).shape[0] / batch_size)

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # n data entries, m features per entry ==> n by m matrix of data
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    # Seed the random number generator
    rng = numpy.random.RandomState(1234)

    # construct the MLP class (the neural net)
    classifier = MLP(
        rng=rng,
        input=x,
        n_in = mlp_in,
        n_hidden=n_hidden,
        n_out=mlp_out,
        num_layers=num_layers
    )

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # compute the gradient of cost with respect to theta (stored in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')

    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        #old_classifier = copy.deepcopy(classifier)
        for minibatch_index in range(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in range(n_valid_batches)]

                this_validation_loss = numpy.mean(validation_losses)

                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%' %
                    (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i
                                   in range(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

                    pickle.dump(classifier, open("best_model.p", "wb"))

                # Otherwise, reduce the learning rate (need to fix this/do this in a better way)
                '''
                else:
                    classifier = old_classifier
                    learning_rate = learning_rate / 2
                    print("Learning rate halved ... the new learning rate is {0}".format(learning_rate))
                '''
            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print(('Optimization complete. Best validation score of %f %% '
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print('The code for file ' + os.path.split(__file__)[1] +
        ' ran for %.2fm' % ((end_time - start_time) / 60.))
예제 #6
0
파일: CNN.py 프로젝트: hariravi/KaggleMLYH
def evaluate_lenet5(learning_rate=0.1, n_epochs=200,
                    dataset='mnist_train.csv',
                    nkerns=[20, 50], batch_size=500, 
                    image_height = 28, image_width = 28, 
                    filter_height = 5, filter_width = 5,
                    hidden_size = 500, pool_size = (2,2),
                    num_classes = 10, num_standard_layers = 1):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = DataLoader.load_kaggle_mnist(dataset)
    #datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches = math.floor(n_train_batches / batch_size)
    n_valid_batches = math.floor(n_valid_batches / batch_size)
    n_test_batches = math.floor(n_test_batches / batch_size)

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (28, 28) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 1, image_height, image_width))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, image_height, image_width),
        filter_shape=(nkerns[0], 1, filter_height, filter_width),
        poolsize=pool_size
    )

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
    new_height = int((image_height - filter_height + 1) / pool_size[0])
    new_width = int((image_width - filter_width + 1) / pool_size[1])
    print(new_height, new_width)

    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], new_height, new_width),
        filter_shape=(nkerns[1], nkerns[0], filter_height, filter_width),
        poolsize=pool_size
    )

    # Again, after filtering/pooling, find new dimension
    new_height = int((new_height - filter_height + 1) / pool_size[0])
    new_width = int((new_width - filter_width + 1) / pool_size[1])

    print(new_height, new_width)
    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * new_height * new_width,
        n_out=hidden_size,
        activation=T.tanh
    )

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=hidden_size, n_out=num_classes)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-1

    ###############
    # TRAIN MODEL #
    ###############
    print('... training')
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print('training @ iter =', iter)
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in range(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i)
                        for i in range(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i, '
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    '''