예제 #1
0
 def individual_feature_analysis(self,data,chosenFeature):
     """
         Compute a group by on the chosenFeature and call featuresBarPlot to plot the result 
     """
         print "chosen feature: ",self.features[chosenFeature]
         featuresMeans = data.groupby(['video_category_id'])[self.features[chosenFeature]].mean()
         featuresNames = [self.Catagory_mapping[x] for x in featuresMeans.index]
         dataplotter.featuresBarPlot(featuresNames,featuresMeans.values)
예제 #2
0
 def individual_feature_analysis(self, data, chosenFeature):
     """
         Compute a group by on the chosenFeature and call featuresBarPlot to plot the result
     """
     try:
         print "chosen feature: ", self.features[chosenFeature]
         featuresMeans = data.groupby(['video_category_id'])[self.features[chosenFeature]].mean()
         featuresNames = [self.Catagory_mapping[x] for x in featuresMeans.index]
         name = "../YoutubeData/FeatureBarChart.pdf"
         plt.savefig(name)
         print "\nPlease close the Bar Chart when you want to move ahead..."
         dataplotter.featuresBarPlot(featuresNames, featuresMeans.values)
         print "You can always retrieve the Feature Importance bar chart in YoutubeData folder.\n"
         time.sleep(3)
         return True
     except:
         raise VideoAnalysisException(" Error while performing individual feature analysis ")
예제 #3
0
 def individual_feature_analysis(self, data, chosenFeature):
     """
         Compute a group by on the chosenFeature and call featuresBarPlot to plot the result
     """
     try:
         print "chosen feature: ", self.features[chosenFeature]
         featuresMeans = data.groupby(['video_category_id'])[self.features[chosenFeature]].mean()
         featuresNames = [self.Catagory_mapping[x] for x in featuresMeans.index]
         name = "../YoutubeData/FeatureBarChart.pdf"
         plt.savefig(name)
         print "\nPlease close the Bar Chart when you want to move ahead..."
         dataplotter.featuresBarPlot(featuresNames, featuresMeans.values)
         print "You can always retrieve the Feature Importance bar chart in YoutubeData folder.\n"
         time.sleep(3)
         return True
     except:
         raise VideoAnalysisException(" Error while performing individual feature analysis ")
예제 #4
0
 def generalAnalysis(self, data, clf):
     """
         Perform general analysis
     """
     try:
         dataplotter.plotFeatureImportance(data, clf)
         dataplotter.plotNumericalCorrelationMatrix(data)
         dataplotter.plotGraphicalCorrelationMatrix(data)
         return True
     except:
         raise VideoAnalysisException(" Error while performing general analysis ")
예제 #5
0
 def generalAnalysis(self, data, clf):
     """
         Perform general analysis
     """
     try:
         dataplotter.plotFeatureImportance(data, clf)
         dataplotter.plotNumericalCorrelationMatrix(data)
         dataplotter.plotGraphicalCorrelationMatrix(data)
         return True
     except:
         raise VideoAnalysisException(" Error while performing general analysis ")
예제 #6
0
#!/usr/bin/python
# -*- coding: utf-8 -*-


import DataPlotter

file1 = "B1VandCy3ebbed1.dat"
file2 = "PVC.pvc"
#dreader = DataPlotter.DataReader(scheme='simplecsv')
#dreader.setDialectByExampleFile(file1)
#print "Delimiter: '" + dreader.Dialect.delimiter +"'"
#dso = dreader.readFile(file1)
##
##dreader = DataPlotter.RsDataReader(scheme='pvc')
##dso = dreader.readFile(file2)
##print len(dso.Data)
##print len(dso.Data[0])
##print len(dso.Data[1])
##print dso.Data[0][0:10]
##print dso.Data[1][0:10]
##print dso.Data[1][-10:-1]
##print dso.Data[0][-10:-1]
dplotter = DataPlotter.RsDataPlotter(scheme='pvc')
dplotter.Plottitle = 'My test'
filelist = ['PVC.pvc', 'PVC2.pvc']
dplotter.plotfiles(filelist)



print("\nTest script completed.")
예제 #7
0
 def plotter(self,master):
     DataPlotter(iff_com = self.do_ifeffit,
                 master=master,  plot_opts= self.plot_opts)
예제 #8
0
    def generalAnalysis(self,data,clf):

            dataplotter.plotFeatureImportance(data,clf)

            dataplotter.plotCorrelationMatrix(data)
        mail = IMAP4_SSL(self.server)
        mail.login(self.user_id, self.password)
        mail.select(folder)
        # retrieving the uids
        interval = (date.today() - timedelta(numberOfDays)).strftime("%d-%b-%Y")
        result, data = mail.uid('search', None,'(SENTSINCE {date})'.format(date=interval))
        # retrieving the headers
        result, data = mail.uid('fetch', data[0].replace(' ',','),'(BODY[HEADER.FIELDS (DATE)])')
        mail.close()
        mail.logout()
        return data

    def parseConfigFile(self, CONFIG_FILE):
        config = ConfigParser.ConfigParser()
        config.read(CONFIG_FILE)
        return config

    def getValue(self, config, group, key):
        return config.get(group, key)


if __name__ == "__main__":
    print 'Fetching emails...'
    mail  = MailFetcher()
    headers = mail.getHeaders('inbox',5)

    print 'Plotting some statistics...'
    xday,ytime = dp.diurnalPlot(headers)
    dp.dailyDistributioPlot(ytime)
    print len(xday),'Emails analysed.'
    show()
예제 #10
0
 def create_data_plot(self):
     self.dataplotter = DataPlotter.DataPlotter()
     self.stats = self.dataplotter.process_filedata(self.output_file_path)
     self.init_ui_page_four()
     self.ui.next()