예제 #1
0
def HighFlowSingleInletTwoCompartmentGadoxetateAnd3DSPGRModel(
        xData2DArray, Ve, Kbh, Khe):
    try:
        exceptionHandler.modelFunctionInfoLogger()
        funcName = 'HighFlowSingleInletTwoCompartmentGadoxetateAnd3DSPGRMode'
        t = xData2DArray[:, 0]
        signalAIF = xData2DArray[:, 1]

        # SPGR model parameters
        TR = 3.78 / 1000  # Repetition time of dynamic SPGR sequence in seconds
        dt = 16  #temporal resolution in sec
        t0 = 5 * dt  # Duration of baseline scans
        FA = 15  #degrees
        r1 = 5.9  # Hz/mM
        R10a = 1 / 1.500  # Hz
        R10t = 1 / 0.800  # Hz

        # Precontrast signal
        Sa_baseline = np.mean(signalAIF[0:int(t0 / t[1]) - 1])

        # Convert to concentrations
        R1a = [
            Parallel(n_jobs=4)(delayed(fsolve)(spgr3d_func,
                                               x0=0,
                                               args=(FA, TR, R10a, Sa_baseline,
                                                     signalAIF[p]))
                               for p in np.arange(0, len(t)))
        ]
        R1a = np.squeeze(R1a)

        concAIF = (R1a - R10a) / r1

        c_if = concAIF

        Th = (1 - Ve) / Kbh

        ce = c_if
        ct = Ve * ce + Khe * Th * tools.expconv(Th, t, ce, funcName)

        # Convert to signal
        St_rel = tools.spgr3d_func_inv(r1, FA, TR, R10t, ct)

        return (
            St_rel
        )  #Returns tissue signal relative to the baseline St/St_baseline
    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #2
0
def HighFlowDualInletTwoCompartmentGadoxetateModel(xData2DArray, Fa: float,
                                                   Ve: float, Kbh: float,
                                                   Khe: float, dummyVariable):
    """This function contains the algorithm for calculating how concentration varies with time
            using the High Flow Dual Inlet Two Compartment Gadoxetate Model model.
        
            Input Parameters
            ----------------
                xData2DArray - time and AIF concentration 1D arrays stacked into one 2D array.
                Vp - Plasma Volume Fraction (decimal fraction).
                Khe - Hepatocyte Uptake Rate (mL/min/mL)
                Kbh - 'Biliary Efflux Rate (mL/min/mL)' 

            Returns
            -------
            modelConcs - list of calculated concentrations at each of the 
                time points in array 'time'.
            """
    try:
        # Logging and exception handling function.
        exceptionHandler.modelFunctionInfoLogger()

        # In order to use scipy.optimize.curve_fit, time and concentration must be
        # combined into one function input parameter, a 2D array, then separated into individual
        # 1 D arrays
        times = xData2DArray[:, 0]
        AIFconcentrations = xData2DArray[:, 1]
        VIFconcentrations = xData2DArray[:, 2]

        # Calculate Venous Flow Factor, fVFF
        fVFF = 1 - Fa

        Th = (1 - Ve) / Kbh

        # Determine an overall concentration
        combinedConcentration = Fa * AIFconcentrations + fVFF * VIFconcentrations

        modelConcs = []
        modelConcs = (Ve*combinedConcentration + \
        Khe*Th*tools.expconv(Th, times, combinedConcentration, 'HighFlowDualInletTwoCompartmentGadoxetateModel'))

        return (modelConcs)

    # Exception handling and logging code.
    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #3
0
def modelFunctionName(xData2DArray, param1, param2, param3, param4, param5,
                      constantsString):
    try:
        exceptionHandler.modelFunctionInfoLogger()

        # Unpack SPGR model constants from
        # a string representation of a dictionary
        # of constants and their values
        constantsDict = eval(constantsString)
        const1, const2 = \
        constantsDict['const1'], constantsDict['const2']

        #model logic goes here

        #return(Array of concentrations/signals)

    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #4
0
def TRISTAN_Rat_Model_v2_0_7T(xData2DArray, Kbh, Khe, 
                                 constantsString):
        """This function contains the algorithm for calculating 
           how the MR signal from a 3D scan varies with time using the 
           TRISTAN Rat Model v2.0 at 7T
        
                Input Parameters
                ----------------
                    xData2DArray - time (sec) and spleen signal 1D arrays 
                        stacked into one 2D array.
              
                    Khe - Hepatocyte Uptake Rate (mL/min/mL)
                    Kbh - Biliary Efflux Rate (mL/min/mL) 
                    constantsString - String representation of a dictionary 
                    of constant name:value pairs used to convert concentrations 
                    predicted by this model to MR signal values.

                Returns
                -------
                St_rel - list of calculated MR signals at each of the 
                    time points in array 'time'.
                """ 
        try:
            exceptionHandler.modelFunctionInfoLogger()
            t = xData2DArray[:,0]
            Ss = xData2DArray[:,1]

            TR = 0.0058
            baseline = 4
            FA = 20
            r1p = 6.4
            r1h = 7.6
            R10_s = 0.7458
            R10_l = 1.3203
            ve_s = 0.314
            ve_l = 0.230

            # Convert to concentrations
            # n_jobs set to 1 to turn off parallel processing
            # because parallel processing caused a segmentation
            # fault in the compiled version of this application.
            # This is not a problem in the uncompiled script
            R1_s = [Parallel(n_jobs=1)(delayed(fsolve)
              (tools.spgr3d_func, x0=0, 
               args = (FA, TR, R10_s, baseline, Ss[p])) 
               for p in np.arange(0,len(t)))]
            R1_s = np.squeeze(R1_s)
        
            DR1_s = R1_s - R10_s
      
            Th = (1-ve_l)/(Kbh/60)
            DR1_l = (ve_l/ve_s)*DR1_s + (r1h/r1p)*((Khe/60)/ve_s)*Th*tools.expconv(Th,t,DR1_s,'TRISTAN_Rat_Model_v2_0_4_7T')
        
            # Convert to signal
            c = np.cos(FA*np.pi/180)
            R1_l = R10_l + DR1_l
            E1 = np.exp(-TR*R1_l)
            Sl = (1-E1)/(1-c*E1)
       
            return(Sl) #Returns tissue signal relative to the baseline St/St_baseline
        
        except ZeroDivisionError as zde:
            exceptionHandler.handleDivByZeroException(zde)
        except Exception as e:
            exceptionHandler.handleGeneralException(e)
예제 #5
0
def HighFlowSingleInletGadoxetate3DSPGR_Rat(xData2DArray, Ve, Kbh, Khe,
                                            constantsString):
    """This function contains the algorithm for calculating 
       how the MR signal from a 3D scan varies with time using the 
       High Flow Single Inlet Two Compartment Gadoxetate Model model.
        
            Input Parameters
            ----------------
                xData2DArray - time and AIF concentration 1D arrays 
                    stacked into one 2D array.
                Ve - Plasma Volume Fraction (decimal fraction).
                Khe - Hepatocyte Uptake Rate (mL/min/mL)
                Kbh - Biliary Efflux Rate (mL/min/mL) 
                constantsString - String representation of a dictionary 
                of constant name:value pairs used to convert concentrations 
                predicted by this model to MR signal values.

            Returns
            -------
            St_rel - list of calculated MR signals at each of the 
                time points in array 'time'.
            """
    try:
        exceptionHandler.modelFunctionInfoLogger()
        t = xData2DArray[:, 0]
        Sa = xData2DArray[:, 1]

        # Unpack SPGR model constants from
        # a string representation of a dictionary
        # of constants and their values
        constantsDict = eval(constantsString)
        TR, baseline, FA, r1, R10a, R10t = \
        float(constantsDict['TR']), \
        int(constantsDict['baseline']),\
        float(constantsDict['FA']), float(constantsDict['r1']), \
        float(constantsDict['R10a']), float(constantsDict['R10t'])

        # Convert to concentrations
        # n_jobs set to 1 to turn off parallel processing
        # because parallel processing caused a segmentation
        # fault in the compiled version of this application.
        # This is not a problem in the uncompiled script
        R1a = [
            Parallel(n_jobs=1)(delayed(fsolve)(
                tools.spgr3d_func, x0=0, args=(FA, TR, R10a, baseline, Sa[p]))
                               for p in np.arange(0, len(t)))
        ]
        R1a = np.squeeze(R1a)

        ca = (R1a - R10a) / r1

        # Correct for spleen Ve
        ve_spleen = 0.43
        ce = ca / ve_spleen
        Th = (1 - Ve) / Kbh
        ct = Ve * ce + Khe * Th * tools.expconv(
            Th, t, ce, 'HighFlowSingleInletGadoxetate3DSPGR_Rat')

        # Convert to signal
        St_rel = tools.spgr3d_func_inv(r1, FA, TR, R10t, ct)

        return (
            St_rel
        )  #Returns tissue signal relative to the baseline St/St_baseline

    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #6
0
def DualInputTwoCompartmentFiltrationModel(xData2DArray, Fa: float, Ve: float,
                                           Fp: float, Kbh: float, Khe: float,
                                           dummyVariable):
    """This function contains the algorithm for calculating how concentration varies with time
            using the Dual Input Two Compartment Filtration Model model.
        
            Input Parameters
            ----------------
                xData2DArray - time and AIF concentration 1D arrays stacked into one 2D array.
                Vp - Plasma Volume Fraction (decimal fraction).
                Fp - Total Plasma Inflow (mL/min/mL)
                Khe - Hepatocyte Uptake Rate (mL/min/mL)
                Kbh - 'Biliary Efflux Rate (mL/min/mL)'

            Returns
            -------
            modelConcs - list of calculated concentrations at each of the 
                time points in array 'time'.
            """
    try:
        # Logging and exception handling function.
        exceptionHandler.modelFunctionInfoLogger()

        # Used by logging in tools.expconv mathematical operation
        # function
        funcName = 'DualInputTwoCompartmentFiltrationModel'

        # Start of model logic.
        # In order to use lmfit curve_fit, time and concentration must be
        # combined into one function input parameter, a 2D array,
        # then separated into individual 1 D arrays
        times = xData2DArray[:, 0]
        AIFconcentrations = xData2DArray[:, 1]
        VIFconcentrations = xData2DArray[:, 2]

        # Calculate Venous Flow Factor, fVFF
        fVFF = 1 - Fa

        # Determine an overall concentration
        combinedConcentration = Fp * (Fa * AIFconcentrations +
                                      fVFF * VIFconcentrations)

        # Calculate Intracellular transit time, Th
        Th = (1 - Ve) / Kbh
        Te = Ve / (Fp + Khe)

        alpha = np.sqrt(((1 / Te + 1 / Th) / 2)**2 - 1 / (Te * Th))
        beta = (1 / Th - 1 / Te) / 2
        gamma = (1 / Th + 1 / Te) / 2

        Tc1 = 1 / (gamma - alpha)
        Tc2 = 1 / (gamma + alpha)

        modelConcs = []
        ce = (1/(2*Ve))*( (1+beta/alpha)*Tc1*tools.expconv(Tc1, times, combinedConcentration, funcName + '- 1') + \
                        (1-beta/alpha)*Tc2*tools.expconv(Tc2, times, combinedConcentration, funcName + '- 2'))

        modelConcs = Ve * ce + Khe * Th * tools.expconv(
            Th, times, ce, funcName + '- 3')

        return (modelConcs)

    # Exception handling and logging code.
    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #7
0
def DualInletTwoCompartmentGadoxetateAnd3DSPGRModel(xData2DArray, Fa, Ve, Fp,
                                                    Kbh, Khe, constantsString):
    try:
        exceptionHandler.modelFunctionInfoLogger()
        funcName = 'DualInletTwoCompartmentGadoxetateAnd3DSPGRModel'
        t = xData2DArray[:, 0]
        signalAIF = xData2DArray[:, 1]
        signalVIF = xData2DArray[:, 2]
        fv = 1 - Fa

        # Unpack SPGR model constants from
        # a string representation of a dictionary
        # of constants and their values
        constantsDict = eval(constantsString)
        TR, dt, t0, FA, r1, R10a, R10v, R10t = \
        constantsDict['TR'], constantsDict['dt'], \
        constantsDict['t0'],\
        constantsDict['FA'], constantsDict['r1'], \
        constantsDict['R10a'], constantsDict['R10v'], \
        constantsDict['R10t']

        # Precontrast signal
        Sa_baseline = np.mean(signalAIF[0:int(t0 / t[1]) - 1])
        Sv_baseline = np.mean(signalVIF[0:int(t0 / t[1]) - 1])

        # Convert to concentrations
        R1a = [
            Parallel(n_jobs=4)(delayed(fsolve)(spgr3d_func,
                                               x0=0,
                                               args=(FA, TR, R10a, Sa_baseline,
                                                     signalAIF[p]))
                               for p in np.arange(0, len(t)))
        ]
        R1v = [
            Parallel(n_jobs=4)(delayed(fsolve)(spgr3d_func,
                                               x0=0,
                                               args=(FA, TR, R10v, Sv_baseline,
                                                     signalVIF[p]))
                               for p in np.arange(0, len(t)))
        ]

        R1a = np.squeeze(R1a)
        R1v = np.squeeze(R1v)

        concAIF = (R1a - R10a) / r1
        concVIF = (R1v - R10v) / r1

        c_if = Fp * (Fa * concAIF + fv * concVIF)

        Th = (1 - Ve) / Kbh
        Te = Ve / (Fp + Khe)

        alpha = np.sqrt(((1 / Te + 1 / Th) / 2)**2 - 1 / (Te * Th))
        beta = (1 / Th - 1 / Te) / 2
        gamma = (1 / Th + 1 / Te) / 2

        # conc = (Ve + Khe(1+Kbh/(vh(1/Tb-1/Th)))exp(-t/Th)-kbhkhe/(vh(1/Tb-1/Th))exp(-t/Tb))*exp(-gamma.t)(cosh(alpha.t)+beta/gamma sinh(alpha.t))*Fp/Ve (Fa concAIF(t)+fv concVIF(t))
        # Let ce(t) = exp(-gamma.t)(cosh(alpha.t)+beta/gamma sinh(alpha.t))*c_if(t) then
        # conc = (Ve + Khe(1+Kbh/(vh(1/Tb-1/Th)))exp(-t/Th)-kbhkhe/(vh(1/Tb-1/Th))exp(-t/Tb))*ce(t)
        Tc1 = 1 / (gamma - alpha)
        Tc2 = 1 / (gamma + alpha)

        ce = (1 / (2 * Ve)) * (
            (1 + beta / alpha) * Tc1 * tools.expconv(Tc1, t, c_if, funcName) +
            (1 - beta / alpha) * Tc2 * tools.expconv(Tc2, t, c_if, funcName))
        ct = Ve * ce + Khe * Th * tools.expconv(Th, t, ce, funcName)

        # Convert to signal
        St_rel = tools.spgr3d_func_inv(r1, FA, TR, R10t, ct)
        print("Signal from model {} = {}".format(funcName, St_rel))
        return (
            St_rel
        )  #Returns tissue signal relative to the baseline St/St_baseline
    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #8
0
def DualInletTwoCompartmentGadoxetateAnd2DSPGRModel(xData2DArray, Fa, Ve, Fp,
                                                    Kbh, Khe):
    try:
        exceptionHandler.modelFunctionInfoLogger()
        funcName = 'DualInletTwoCompartmentGadoxetateAnd2DSPGRModel'
        t = xData2DArray[:, 0]
        signalAIF = xData2DArray[:, 1]
        signalVIF = xData2DArray[:, 2]
        fv = 1 - Fa

        # Get SPGR model parameters
        TR = 3.78 / 1000  # Repetition time of dynamic SPGR sequence in seconds
        dt = 16  #temporal resolution in sec
        t0 = 5 * dt  # Duration of baseline scans
        FA = 15  #degrees
        r1 = 5.9  # Hz/mM
        R10a = 1 / 1.500  # Hz
        R10v = 1 / 1.500  # Hz
        R10t = 1 / 0.800  # Hz

        # Precontrast signal
        Sa_baseline = np.mean(signalAIF[0:int(t0 / t[1]) - 1])
        Sv_baseline = np.mean(signalVIF[0:int(t0 / t[1]) - 1])

        # Convert to concentrations
        R1a = [
            Parallel(n_jobs=4)(delayed(fsolve)(spgr2d_func,
                                               x0=0,
                                               args=(FA, TR, R10a, Sa_baseline,
                                                     signalAIF[p]))
                               for p in np.arange(0, len(t)))
        ]
        R1v = [
            Parallel(n_jobs=4)(delayed(fsolve)(spgr2d_func,
                                               x0=0,
                                               args=(FA, TR, R10v, Sv_baseline,
                                                     signalVIF[p]))
                               for p in np.arange(0, len(t)))
        ]

        R1a = np.squeeze(R1a)
        R1v = np.squeeze(R1v)

        concAIF = (R1a - R10a) / r1
        concVIF = (R1v - R10v) / r1

        c_if = Fp * (Fa * concAIF + fv * concVIF)

        Th = (1 - Ve) / Kbh
        Te = Ve / (Fp + Khe)

        alpha = np.sqrt(((1 / Te + 1 / Th) / 2)**2 - 1 / (Te * Th))
        beta = (1 / Th - 1 / Te) / 2
        gamma = (1 / Th + 1 / Te) / 2

        # conc = (Ve + Khe(1+Kbh/(vh(1/Tb-1/Th)))exp(-t/Th)-kbhkhe/(vh(1/Tb-1/Th))exp(-t/Tb))*exp(-gamma.t)(cosh(alpha.t)+beta/gamma sinh(alpha.t))*Fp/Ve (Fa concAIF(t)+fv concVIF(t))
        # Let ce(t) = exp(-gamma.t)(cosh(alpha.t)+beta/gamma sinh(alpha.t))*c_if(t) then
        # conc = (Ve + Khe(1+Kbh/(vh(1/Tb-1/Th)))exp(-t/Th)-kbhkhe/(vh(1/Tb-1/Th))exp(-t/Tb))*ce(t)
        Tc1 = 1 / (gamma - alpha)
        Tc2 = 1 / (gamma + alpha)

        ce = (1 / (2 * Ve)) * (
            (1 + beta / alpha) * Tc1 * tools.expconv(Tc1, t, c_if, funcName) +
            (1 - beta / alpha) * Tc2 * tools.expconv(Tc2, t, c_if, funcName))
        ct = Ve * ce + Khe * Th * tools.expconv(Th, t, ce, funcName)

        # Convert to signal
        St_rel = tools.spgr2d_func_inv(r1, FA, TR, R10t, ct)

        return (
            St_rel
        )  #Returns tissue signal relative to the baseline St/St_baseline
    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)
예제 #9
0
			        NewSched_Timer = NewSched_Timer + datetime.timedelta(seconds=int(Play_Interval)) ·
			except:
				NewSched_Timer = NewSched_Timer + datetime.timedelta(seconds=int(Play_Interval))
			#*-----------------FTP取文件模块-----------------------------
			if int(IsKDMT)==1:
				P3 = threading.Thread(target=FTPMudolar,args=(i,MT_IP,FTP_UN,FTP_PW,FTP_FilePath,path_ftp,FTP_FileNameList,))
				P3.setDaemon(True)
				P3.start()
				#FTPMudolar(i,MT_IP,FTP_UN,FTP_PW,FTP_FilePath,path_ftp,FTP_FileNameList)
			#*------------------AEC效果自动预判-----------------------*
			P1=threading.Thread(target=AECAnalysis,args=(i,RefTestFileList,UpDateDictTestFile,strFileCapAecName,MinidB,AECMod,))
			P1.setDaemon(True)
			P1.start()
			i=i+1
    
           
#调试函数 
if __name__=='__main__':   
        path_ref_file = os.getcwd() + "\\test_file\\"
        ConfigDict = Get_config("Config.ini")
        Sched_Timer = ConfigDict.get('Sched_Timer')
        try:
                ExceptionHandling.EH_Get_config()
        except:
                print "请查看日志文件test.log"
                sys.exit(1)
        timerFun(Sched_Timer)
        print "Test over! Please check  the test results!"


def Model_Function_Template(xData2DArray, param1, param2, param3, param4,
                            param5, constantsString):
    """This function contains the algorithm for calculating 
       how MR signal varies with time.
        
            Input Parameters
            ----------------
                xData2DArray - time and AIF signal 
                    (and VIR signal if dual inlet model) 1D arrays 
                    stacked into one 2D array.
                param1 - model parameter.
                param2 - model parameter.
                param3 - model parameter.
                param4 - model parameter.
                param5 - model parameter.
                constantsString - String representation of a dictionary 
                of constant name:value pairs used to convert concentrations 
                predicted by this model to MR signal values.

            Returns
            -------
            St_rel - list of calculated MR signals at each of the 
                time points in array 'time'.
            """
    try:
        exceptionHandler.modelFunctionInfoLogger  #please leave

        times = xData2DArray[:, 0]
        signalAIF = xData2DArray[:, 1]
        #Uncheck the next line of code if the model is dual inlet
        #and there is a VIF
        #signalVIF = xData2DArray[:,2]

        # Unpack SPGR model constants from
        # a string representation of a dictionary
        # of constants and their values.
        # If constants are added/removed from the Model Library XML
        # file, this section must be updated accordingly
        constantsDict = eval(constantsString)
        TR, baseline, FA, r1, R10a, R10t = \
        float(constantsDict['TR']), \
        int(constantsDict['baseline']),\
        float(constantsDict['FA']), float(constantsDict['r1']), \
        float(constantsDict['R10a']), float(constantsDict['R10t'])

        # Convert AIF MR signals to concentrations
        # n_jobs set to 1 to turn off parallel processing
        # because parallel processing caused a segmentation
        # fault in the compiled version of this application.
        # This is not a problem in the uncompiled script
        R1a = [
            Parallel(n_jobs=1)(delayed(fsolve)(tools.spgr2d_func,
                                               x0=0,
                                               args=(r1, FA, TR, R10a,
                                                     baseline, signalAIF[p]))
                               for p in np.arange(0, len(times)))
        ]

        R1a = np.squeeze(R1a)

        ca = (R1a - R10a) / r1

        ###########################################
        #
        # Add code here to calculate concentration, ct
        #
        ##############################################

        # Convert to signal
        St_rel = tools.spgr2d_func_inv(r1, FA, TR, R10t, ct)

        #Return tissue signal relative to the baseline St/St_baseline
        return (St_rel)

    #please leave the next 4 lines of code
    except ZeroDivisionError as zde:
        exceptionHandler.handleDivByZeroException(zde)
    except Exception as e:
        exceptionHandler.handleGeneralException(e)