def __init__(self): self.feature_vec = [ features.LinearX1(), features.LinearX2(), features.SquareX1(), features.ExpX2(), features.LogX1(), features.Identity() ] self.feature_weights = [1, 2, 1, 0.1, 10, 40] self.noise_model = noise.NoiseModel() self.max_x1 = 10 self.max_x2 = 10 self.saver = saver.DataSaver('data', 'data_samples.pkl')
lm[part] = model.LinearRegressionModel() # TODO use and select the new features lm[part].set_feature_vector([ features.LinearX1(), features.LinearX2(), features.LinearX3(), features.LinearX4(), features.SquareX1(), features.SquareX2(), features.SquareX3(), features.SquareX4(), features.ExpX1(), features.ExpX2(), features.ExpX3(), features.ExpX4(), features.LogX1(), features.LogX2(), features.LogX3(), features.LogX4(), features.SinX1(), features.SinX2(), features.SinX3(), features.SinX4(), # features.X1Cube(), features.X2Cube(), # features.X3Cube(), features.X4Cube(), # features.TanX1(), features.TanX2(), # features.TanX3(), features.TanX4(), # features.X1OverX2(), features.X1OverX3(), # features.X1OverX4(), features.X2OverX3(), # features.X2OverX4(), features.X3OverX4(), features.CrossTermX1X2(),