# 把词语表通过OneHot转换为特征向量 # 输入:一维词表,定义好了的向量词典 def ConvertWordsToTensor(words, dic): l = len(dic) z = np.zeros([l, 1], dtype=np.float) for w in words: if w in dic: z[dic[w]] = 1 else: z[dic['UNKNOWN']] = 1 return z fr = FR.OneHotBuilder(R'data/1998-01-2003版-带音.txt', "19980101", "19980120") # 把y[i]建成一个numpy向量列表? X = [] for w in fr.linkedWord: z = ConvertWordsToTensor(w, fr.oneHotDic) X.append(torch.from_numpy(z)) Y = [] for w in fr.linkedWord: if w in fr.entityWord: # Y.append(1) Y.append(torch.tensor([1.])) else: # Y.append(0)