def nu(self): # make new variable v = Term.var(self.n) # extend state self.state = Gauss.tensor(self.state, Gauss.N(1)) self.n += 1 return v
def gp(xs, kernel): K = [[ kernel(x1,x2) for x1 in xs] for x2 in xs ] return Gaussian.N(np.array(K))
def __init__(self): self.n = 0 # number of variables self.equations = [] self.state = Gauss.N(0)