import time as t import jhmmtg as jh import junction_init as ji # import big_junction_init as bji import big_jhmmtg as bjh # import big_HRLB as bhr import HRLB as hr import re import tibar_prediction as tp import tgeaa as tg node_list = [] com_node_list = [] sim_time = 309 # int(input("sim_time:")) # 位置文件读取 movement_matrix, init_position_matrix = Gm.get_position('tiexi1.tcl') node_num = init_position_matrix.shape[0] # 控制器初始化 controller = Init.init_controller(node_num) # 位置数据处理 init_position_arranged = init_position_matrix[np.lexsort( init_position_matrix[:, ::-1].T)] node_position = init_position_arranged[0] # node_position = np.insert(node_position, 0, values=np.zeros(node_num), axis=1) # node_position = np.column_stack((node_position, node_position[:, 2:4])) # node_position = np.insert(node_position, 6, values=np.zeros(node_num), axis=1) # ji.inti()
def initial_placement(intersection_position, intersection_matrix): x0 = 99990 x1 = 0 y0 = 99990 y1 = 0 for i in intersection_position: if i[0] < x0: x0 = i[0] if i[1] < y0: y0 = i[1] if i[0] > x1: x1 = i[0] if i[1] > y1: y1 = i[1] ## 多控制器初始化 draw_list.clear() rect_list.clear() position_list = [] no = 0 ## 初始布置算法 chushu = 0.00019 * Gp.con_dis * Gp.con_dis ## 在所有路口出放置控制器 (=゚ω゚)=b for key, i in enumerate(intersection_position): a = [i[0], i[1]] position_list.append(a) a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') num = 0 for x, y in zip(a[:, 0], a[:, 1]): plt.text(x, y + 0.3, str(num), ha='center', va='bottom', fontsize=10.5) num += 1 plt.show() ## 对于路口间路段长度过长的(>= 2*通信范围),补充控制器以实现全覆盖。(`・ω・) c_n = intersection_position.__len__() for i in range(c_n): for j in range(c_n): if intersection_matrix[i][j] > Gp.con_dis * 2: ##(>= 4*通信范围)以圆相切的方式补充控制器 if intersection_matrix[i][j] > Gp.con_dis * 4: len = intersection_matrix[i][j] k = (intersection_position[j][1] - intersection_position[i][1]) / \ (intersection_position[j][0] - intersection_position[i][0]) x = math.sqrt(pow(Gp.con_dis * 2, 2) / (k * k + 1)) ## 两路口谁长谁高 作比较,做标记 if intersection_position[j][0] > intersection_position[i][0]: x_flag = 1 else: x_flag = -1 if intersection_position[j][1] > intersection_position[i][1]: y_flag = 1 else: y_flag = -1 c_x = intersection_position[i][0] c_y = intersection_position[i][1] ## 剩余路段长度放得下时,循环添加控制器 while len >= 0: c_x += x_flag * x c_y += y_flag * k * x a = [c_x, c_y] position_list.append(a) len -= Gp.con_dis * 2 c_x += x_flag * x c_y += y_flag * k * x a = [c_x, c_y] position_list.append(a) ## 在最后一个坐标与j中间放一个 ##(<= 4*通信范围 and >= 2*通信范围)时,两路口中点放置控制器,即可全覆盖 else: a = [(intersection_position[i][0] + intersection_position[j][0]) / 2, \ (intersection_position[i][1] + intersection_position[j][1]) / 2] position_list.append(a) n_best = 0 a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') plt.show() ## 过于拥挤时,减少多余控制器,循环:判断密集控制器,删除密集控制器,鱼鳞布置新控制器 (*´∀`) for time in range(100): n = position_list.__len__() edge_c = 0 adj = [[0 for i in range(n)] for i in range(n)] dis = 0 ## 两路口间距离< 通信距离时,即两路口过于接近,在adj邻接矩阵中做标记 for key_i, i in enumerate(position_list): for key_j, j in enumerate(position_list): if key_i != key_j: dis = pow(i[0] - j[0], 2) + pow(i[1] - j[1], 2) if dis < pow(Gp.con_dis, 2): adj[key_i][key_j] = 1 adj[key_j][key_i] = 1 delete_list = [] add_list = [] m = [] ress = [] s = Stack() count = 0 n = position_list.__len__() ## 根据adj邻接矩阵,划分其路口图的联通子集,并将其转换为最小的长方形,以覆盖子集中所有成员 (σ`∀´) for i in range(n): if m.count(i) >= 1: continue else: m.append(i) result = getstack(adj, i, n, s) if result == 0: ress.append([i]) count += 1 else: relay = [i] while s.size() != 0: temp = s.peek() s.pop() if m.count(temp) == 0: relay.append(temp) m.append(temp) getstack(adj, temp, n, s) ## new!! 子集中节点为2个,进行判断,如果两点过于接近,就删除两点,取其中点,否则保留两点。 (*゚∇゚) if relay.__len__() == 2: d = pow((position_list[relay[0]][0] - position_list[relay[1]][0]), 2) + pow( (position_list[relay[0]][1] - position_list[relay[1]][1]), 2) if d <= pow(Gp.con_dis / 2, 2): add_list.append([(position_list[relay[0]][0] + position_list[relay[1]][0]) / 2, (position_list[relay[0]][1] + position_list[relay[1]][1]) / 2]) delete_list.append(relay[0]) delete_list.append(relay[1]) continue for node in relay: draw_list.append(node) ## 绘制长方形 min_x = 99999 min_y = 99999 max_x = 0 max_y = 0 for i in relay: # delete_list.append(position_list[i]) if position_list[i][0] > max_x: max_x = position_list[i][0] if position_list[i][1] > max_y: max_y = position_list[i][1] if position_list[i][0] < min_x: min_x = position_list[i][0] if position_list[i][1] < min_y: min_y = position_list[i][1] ## new!!适当扩大长方形面积,边缘更好地与其他长方形适应 (*゚∇゚) if min_x - (Gp.con_dis / chushu) >= x0: min_x -= (Gp.con_dis / chushu) if min_y - (Gp.con_dis / chushu) >= y0: min_y -= (Gp.con_dis / chushu) if max_x + (Gp.con_dis / chushu) <= x1: max_x += (Gp.con_dis / chushu) if max_y + (Gp.con_dis / chushu) <= y1: max_y += (Gp.con_dis / chushu) # min_x -= (Gp.con_dis / chushu) # min_y -= (Gp.con_dis / chushu) # max_x += (Gp.con_dis / chushu) # max_y += (Gp.con_dis / chushu) # # min_x -= (Gp.con_dis / 12) # # min_y -= (Gp.con_dis / 12) # # max_x += (Gp.con_dis / 12) # # max_y += (Gp.con_dis / 12) rect_list.append([min_x, min_y, max_x, max_y, 0]) ## 对长方形内面积实现鱼鳞布置 ## new!! 所有子集所属长方形进行判断,如互相重叠,即融合两个长方形 (*゚∇゚) rett = [] for tt in range(10): for ri in rect_list: if ri[4] != 0: continue for rj in rect_list: if ri == rj: continue if rj[4] != 0: continue if (isOverlap(ri[0], ri[1], ri[2], ri[3], rj[0], rj[1], rj[2], rj[3]) == 1): ri[4] = 1 rj[4] = 1 ## 融合 rett.append([min(ri[0], rj[0]), min(ri[1], rj[1]), max(ri[2], rj[2]), max(ri[3], rj[3]), 0]) for r in rect_list[::-1]: if r[4] == 1: rect_list.remove(r) for r in rett: rect_list.append(r) rett.clear() ## new!! 根据新的子集长方形,进行鱼鳞分布 (*゚∇゚) for rr in rect_list: add = fish_placement(rr[0], rr[1], rr[2], rr[3], 0) for i in add: add_list.append(i) ## new!! 所有长方形范围中节点全部删除 (*゚∇゚) for r in rect_list: for node in position_list: if node[0] >= r[0] and node[0] <= r[2] and node[1] >= r[1] and node[1] <= r[3]: delete_list.append(node) a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') for r in rect_list: plt.gca().add_patch(plt.Rectangle(xy=(r[0], r[1]), width=r[2] - r[0], height=r[3] - r[1], fill=False, linewidth=2)) plt.show() rect_list.clear() ## 删除子集内所有原控制器 for i in position_list[::-1]: time1 = 0 if delete_list.count(i) >= 1: # for node in position_list: # if time1 >= 2: # break # d = pow(i[0] - node[0], 2) + pow(i[1] - node[1], 2) # if d <= pow(Gp.con_dis,2): # time1 += 1 # if time1 >= 2: position_list.remove(i) ## 将鱼鳞布置控制器加入 for iii in add_list: position_list.append(iii) # a = np.array(position_list) # fig = plt.figure(figsize=(8, 7.82), dpi=80) # plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis*Gp.con_dis*0.024, edgecolors='blue') # plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') # plt.show() number = position_list.__len__() ## 如果结果稳定,即视为最优解,不然继续循环:判断密集控制器,删除密集控制器,鱼鳞布置新控制器 if number == n_best: time += 1 if time >= 10: break else: n_best = number edge_list = [] ## 统计所有路口间路段,起始点坐标 (〃∀〃) for i in range(c_n): for j in range(i): if intersection_matrix[i][j] != 0: edge_list.append([intersection_position[i], intersection_position[j], 0]) flag = 0 ## 对每个控制器判断,自身是否覆盖到任一路段,是否自身为无用控制器,对路段自身也做判断,无控制器覆盖则做标记 (*´ω`*) for con in position_list[::-1]: for edge in edge_list: if lc.Judis(edge[0][0], edge[0][1], edge[1][0], edge[1][1], con[0], con[1], Gp.con_dis) == 1: flag += 1 edge[2] = 1 ## 删除所有无效控制器 if flag == 0: position_list.remove(con) flag = 0 ## 将无控制器负责的路段 在路段中间架设控制器 (ゝ∀・)☆ for edge in edge_list: if edge[2] == 0: position_list.append([(edge[0][0] + edge[1][0]) / 2, (edge[0][1] + edge[1][1]) / 2]) a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') plt.show() ## 避免过于密集,再次鱼鳞 (^o^)ノ n = position_list.__len__() edge_c = 0 adj = [[0 for i in range(n)] for i in range(n)] dis = 0 for con in position_list: con.append(0) con.append(0) time = 0 ve = 0 flag = 0 movement_matrix, init_position_matrix = Gm.get_position('tiexi1.tcl') time_topo = [[] for i in range(10000)] for i in movement_matrix: time_topo[int(i[0, 0])].append([i[0, 2], i[0, 3]]) ## 统计sumo每一时刻数据中车辆位置数据,对于孤岛节点用controller中第四个属性做标记 (*´∀`) for graph in time_topo: for node in graph: for nodei in graph: if node != nodei: if pow(nodei[1] - node[1], 2) + pow(nodei[0] - node[0], 2) <= pow(Gp.com_dis, 2): flag = 1 break if flag == 0: for con in position_list: if pow(con[1] - node[1], 2) + pow(con[0] - node[0], 2) <= pow(Gp.con_dis, 2): con[3] += 1 flag = 0 ## 对车辆拓扑进行长时间统计,对控制范围下车辆过于稀疏的控制器进行删除处理 (*´∀`) with open("tiexi1.tcl", 'r') as f: item_list = [] for line in f: line_list = re.split('[\s]', line) if line_list[0] != '': if (float(line_list[2]) > time): time = float(line_list[2]) if (float(line_list[3][8:-1]) > ve): ve = float(line_list[3][8:-1]) item_list.append(float(line_list[2])) item_list.append(float(line_list[3][8:-1])) item_list.append(float(line_list[5])) item_list.append(float(line_list[6])) item_list.append(float(line_list[7][0:-1])) ## 统计sumo每一时刻数据中车辆位置数据,对于车流量用controller中第三个属性做标记 *・゚(*´ω`*)・ for con in position_list: d = pow(con[0] - item_list[2], 2) + pow(con[1] - item_list[3], 2) if d < pow(Gp.con_dis, 2): con[2] += 1 item_list.clear() flag = 0 ## 可能删去的偏僻控制器 *・゚(*´ω`*)・ position_list_can = [] ## 车流量大需要固定的控制器 (*゚∇゚)♡ position_list_fixed = [] for con in position_list[::-1]: # 阈值应根据多个因素做调整,包括通信半径,数据包含时长,数据总车辆数等,车流量小且孤岛节点多的控制器删去 ( ゚ 3゚) if con[2] <= (pow(Gp.con_dis, 2) * math.pi) / ((x1 - x0) * (y1 - y0)) * ve * time / 6 and con[3] > ( (pow(Gp.con_dis, 2)) / ((x1 - x0) * (y1 - y0)) * ve * time / 14.3): position_list_can.append(con) position_list.remove(con) # 车流量大的固定 if con[2] >= (pow(Gp.con_dis, 2) * math.pi) / ((x1 - x0) * (y1 - y0)) * ve * time / 3: position_list_fixed.append(con) position_list.remove(con) a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024) plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') a = np.array(position_list_fixed) # fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, c='y', edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') a = np.array(position_list_can) # fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, c='m', edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') plt.show() ## 对车流量大的控制器进行标记,相互之间距离近的连接 (^o^)ノ n = position_list_fixed.__len__() fixed_position_adj = [[0 for i in range(n)] for i in range(n)] for numi, i in enumerate(position_list_fixed): for numj, j in enumerate(position_list_fixed): if pow(j[1] - i[1], 2) + pow(j[0] - i[0], 2) <= pow(Gp.con_dis * 2, 2): fixed_position_adj[numi][numj] = 1 delete_list = [] add_list = [] m = [] ress = [] s = Stack() rect_list.clear() count = 0 ## 与上文同样的步骤,联通子集,画长方形 (`ε´ ) for i in range(n): if m.count(i) >= 1: continue else: m.append(i) result = getstack(fixed_position_adj, i, n, s) if result == 0: ress.append([i]) count += 1 else: relay = [i] while s.size() != 0: temp = s.peek() s.pop() if m.count(temp) == 0: relay.append(temp) m.append(temp) getstack(fixed_position_adj, temp, n, s) for node in relay: draw_list.append(node) ## 绘制长方形 min_x = 99999 min_y = 99999 max_x = 0 max_y = 0 for i in relay: # delete_list.append(position_list_fixed[i]) if position_list_fixed[i][0] > max_x: max_x = position_list_fixed[i][0] if position_list_fixed[i][1] > max_y: max_y = position_list_fixed[i][1] if position_list_fixed[i][0] < min_x: min_x = position_list_fixed[i][0] if position_list_fixed[i][1] < min_y: min_y = position_list_fixed[i][1] # min_x -= (Gp.con_dis / chushu) # min_y -= (Gp.con_dis / chushu) # max_x += (Gp.con_dis / chushu) # max_y += (Gp.con_dis / chushu) # # min_x -= (Gp.con_dis / 12) # # min_y -= (Gp.con_dis / 12) # # max_x += (Gp.con_dis / 12) # # max_y += (Gp.con_dis / 12) rect_list.append([min_x, min_y, max_x, max_y, 0]) ## 对长方形内面积实现鱼鳞布置 fig = plt.figure(figsize=(8, 7.82), dpi=80) a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024) plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') a = np.array(position_list_fixed) # fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, c='y', edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') a = np.array(position_list_can) # fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, c='m', edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') for r in rect_list: plt.gca().add_patch(plt.Rectangle(xy=(r[0], r[1]), width=r[2] - r[0], height=r[3] - r[1], fill=False, linewidth=2)) plt.show() # ## new!! 所有子集所属长方形进行判断,如互相重叠,即融合两个长方形 (*゚∇゚) # rett = [] # for tt in range(10): # for ri in rect_list: # if ri[4] != 0: # continue # for rj in rect_list: # if ri == rj: # continue # if rj[4] != 0: # continue # if (isOverlap(ri[0], ri[1], ri[2], ri[3], rj[0], rj[1], rj[2], rj[3]) == 1): # ri[4] = 1 # rj[4] = 1 # ## 融合 # rett.append([min(ri[0], rj[0]), min(ri[1], rj[1]), max(ri[2], rj[2]), max(ri[3], rj[3]), 0]) # for r in rect_list[::-1]: # if r[4] == 1: # rect_list.remove(r) # for r in rett: # rect_list.append(r) # rett.clear() ## new!! 根据新的子集长方形,进行鱼鳞分布 (*゚∇゚) for rr in rect_list: xx = range(int(rr[0]), int(rr[2]), int(4 * Gp.con_dis)) yy = range(int(rr[1]), int(rr[3]), int(4 * Gp.con_dis)) ## 将长方形分割成同样大小的长方形,如果长方形内固定控制器超过一定数量,删去之中所有节点,稀疏布置 σ`∀´) for i in xx: for j in yy: count = 0 for con in position_list_fixed: if i + 4 * Gp.con_dis >= con[0] >= i and j <= con[1] <= j + 4 * Gp.con_dis: count += 1 if count >= 4: for con in position_list_fixed[::-1]: if i + 4 * Gp.con_dis >= con[0] >= i and j <= con[1] <= j + 4 * Gp.con_dis: position_list_fixed.remove(con) for con in position_list[::-1]: if i + 4 * Gp.con_dis >= con[0] >= i and j <= con[1] <= j + 4 * Gp.con_dis: position_list.remove(con) position_list_fixed.append([i + Gp.con_dis, j + Gp.con_dis, 0, 0]) position_list_fixed.append([i + 3 * Gp.con_dis, j + Gp.con_dis, 0, 0]) position_list_fixed.append([i + 3 * Gp.con_dis, j + 3 * Gp.con_dis, 0, 0]) position_list_fixed.append([i + Gp.con_dis, j + 3 * Gp.con_dis, 0, 0]) a = np.array(position_list) fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024) plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') a = np.array(position_list_fixed) # fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, c='y', edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') a = np.array(position_list_can) # fig = plt.figure(figsize=(8, 7.82), dpi=80) plt.scatter(a[:, 0], a[:, 1], alpha=0.5, s=Gp.con_dis * Gp.con_dis * 0.024, c='m', edgecolors='blue') plt.scatter(a[:, 0], a[:, 1], alpha=1, s=1, edgecolors='black') for r in rect_list: plt.gca().add_patch(plt.Rectangle(xy=(r[0], r[1]), width=r[2] - r[0], height=r[3] - r[1], fill=False, linewidth=2)) plt.show() ## 对固定控制器之中较为靠近控制器对进行稀疏分布 (*゚∇゚) for numi,i in enumerate(position_list_fixed): for numj,j in enumerate(position_list_fixed): if numi < numj: d = pow(i[0] - j[0], 2) + pow(i[1] - j[1], 2) if d <= pow(Gp.con_dis, 2): add_list.append([(i[0] + j[0]) / 2, (i[1] + j[1]) / 2, 0,0]) delete_list.append(i) delete_list.append(j) continue for i in add_list: position_list_fixed.append(i) for j in delete_list: position_list_fixed.remove(j) ## 返回所有控制器位置,算法完成 (^o^)ノ return position_list, position_list_fixed
import Get_Move as Gm import Init import numpy as np import Global_Par as Gp node_list = [] com_node_list = [] node_num, sim_time = Gm.get_sim_parameter('grid.config.tcl') movement_matrix, init_position_matrix = Gm.get_position('grid.mobility.tcl') controller = Init.init_controller(0, node_num) init_position_arranged = init_position_matrix[np.lexsort( init_position_matrix[:, ::-1].T)] node_position = init_position_arranged[0] node_position = np.insert(node_position, 0, values=np.zeros(node_num), axis=1) node_position = np.column_stack((node_position, node_position[:, 2:4])) node_position = np.insert(node_position, 6, values=np.zeros(node_num), axis=1) node_list = (Init.init_node(node_position, controller)) com_node_list.extend(Init.get_communication_node(node_num)) # for time in range(sim_time): time = 0 print('Time: %d' % time) current_move = movement_matrix[np.nonzero(movement_matrix[:, 0].A == time)[0], :] for value in current_move: for i in range(2, 4): node_position[int(value[0, 1]), i] = value[0, i] node_id_position = node_position[:, [1, 2, 3]] # print(node_id_position[44]) for node in node_list: