import sys import os import Globals import numpy as np from matplotlib import pyplot as plt OUTPUT_PATH = os.path.expanduser("~") + "/" + "Python_outputs" if not os.path.exists(OUTPUT_PATH): os.makedirs(OUTPUT_PATH) OUTPUT_PATH = "/home/ubuntu-lieder-pc/Python_outputs/" OUTPUT_PATH = "/home/dell/Python_outputs/" CODE_PATH = Globals.path_dic("code") DATA_PATH = Globals.path_dic("data") # Make sure the data files are named: 'continuous.mat' # and 'bimodal.mat' for each respective experiment sys.path.append(CODE_PATH) from data_loader.load_data import * from inference_toolboxes.pymc3_functions.inference_pymc3 import * from stimulus_generation.generate_stimuli import * from model_simulations.descriptive_model import * def plot_distribution(s1, s2): f, ax = plt.subplots(2, 2) ax[0, 0].plot(s1, s2, ".") ax[0, 1].plot(s1[1:] - s2[1:], s1[1:] - 0.5 * (s1[:-1] + s2[:-1]), ".") ax[1, 0].hist(s1, bins=30) ax[1, 1].hist(s2, bins=30)
for i_typ, typ in enumerate(["good", "poor"]): save_prefix = "linear_part/" if not os.path.exists("./" + save_prefix): os.makedirs("./" + save_prefix) save_name = model + "_ml_fit_" + typ + "_" + str(thresh) + ".svg" print save_name # ========================================= # Loading data per accuracy # ========================================= data_path = Globals.path_dic("data") loader = Dataloader(data_path + "continuous.mat") poor = (0.65, 0.85) good = (0.85, 1) r = poor if typ == "poor" else good I = loader.subject_indices_for_acc_range(r) F1, F2, Y = loader.subject_data_from_indices(list(I)) # ========================================= # Preprocess data for regression # ========================================= x, y = get_trial_covariates(F1, F2, Y, T=T, inf=0) x = x.T
import sys import os import Globals from matplotlib import pyplot as plt OUTPUT_PATH = os.path.expanduser('~')+'/'+'Python_outputs' if not os.path.exists(OUTPUT_PATH): os.makedirs(OUTPUT_PATH) OUTPUT_PATH = "/home/ubuntu-lieder-pc/Python_outputs/" CODE_PATH = Globals.path_dic('code') DATA_PATH = Globals.path_dic('data') CODE_PATH = "/home/ubuntu-lieder-pc/git/additive_modelling_pitch_bias/" DATA_PATH = CODE_PATH + "data_files/" print CODE_PATH # Make sure the data files are named: 'continuous.mat' # and 'bimodal.mat' for each respective experiment sys.path.append(CODE_PATH) from data_loader.load_data import * from inference_toolboxes.pymc3_functions.inference_pymc3 import * samples=10000 T = 1 inf = 0 dataloader = Dataloader(DATA_PATH +'continuous.mat') groups = 3 acc_sample = np.array([[0.63,0.75],[0.75,0.88],[0.88,1]])
# iterating over lags for T in [1,2]: # iterating over groups of subjects for i_typ,typ in enumerate(['good','poor']): save_name = mod_typ+'_'+typ+str(T)+'_tresh_'+str(thresh)+'.svg' print save_name #========================================= # Loading data per accuracy #========================================= data_path = Globals.path_dic('data') loader = Dataloader(data_path+'continuous.mat') r = poor if typ == 'poor' else good I = loader.subject_indices_for_acc_range(r) F1,F2,Y = loader.subject_data_from_indices(list(I)) #========================================= # Preprocess data for regression #========================================= x,y = get_trial_covariates(F1,F2,Y,T=T,inf=0) x = x.T #========================================= # Subselect close trials