pi = np.pi e = np.e plt.close('all') c = 3. * 10**8 h = 6.62 * 10**-34 k = 1.38 * 10**-23 Ken98 = (4.5 * 10**-44) Conversion2Chabrier = 1.7 # Also Madau Calzetti12 = 2.8 * 10**-44 arrow = u'$\u2193$' PATH = '/Users/jansen/Google Drive/Astro/' fsz = gst.graph_format() New = Table.read(PATH + 'Four_Quasars/Four_Quasars.fits') import Plotting_tools as emplot def smooth(image, sm): from astropy.convolution import Gaussian2DKernel from scipy.signal import convolve as scipy_convolve from astropy.convolution import convolve gauss_kernel = Gaussian2DKernel(sm) con_im = convolve(image, gauss_kernel)
pi = np.pi e = np.e plt.close('all') c = 3. * 10**8 h = 6.62 * 10**-34 k = 1.38 * 10**-23 Ken98 = (4.5 * 10**-44) Conversion2Chabrier = 1.7 # Also Madau Calzetti12 = 2.8 * 10**-44 arrow = u'$\u2193$' PATH = '/Users/jansen/Google Drive/Astro/' fsz = gst.graph_format(Labelsize=15) def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx] def find_nearest_idx(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def gauss(x, k, sig):