예제 #1
0
def compute_model(options):

    import numpy
    import astropy.io.fits as fits
    import JLA_library as JLA
    from astropy.table import Table
    from astropy.cosmology import FlatwCDM
    from scipy.interpolate import interp1d


    # -----------  Read in the configuration file ------------
    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    print 'There are %d SNe' % (nSNe)

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    redshift = SNe['zcmb']
    replace=(redshift < 0)

    # For SNe that do not have the CMB redshift
    redshift[replace]=SNe[replace]['zhel']
    print len(redshift)

    if options.raw:
        # Data from the bottom left hand figure of Mosher et al. 2014.
        # This is option ii) that is descibed above
        offsets=Table.read(JLA.get_full_path(params['modelOffset']),format='ascii.csv')
        Delta_M=interp1d(offsets['z'], offsets['offset'], kind='linear',bounds_error=False,fill_value='extrapolate')(redshift)
    else:
        Om_0=0.303 # JLA value in the wCDM model
        cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0)
        cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024)
        Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift))
    
    # Build the covariance matrix. Note that only magnitudes are affected
    Zero=numpy.zeros(nSNe)
    H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F')
    C_model=numpy.matrix(H).T * numpy.matrix(H)

    date = JLA.get_date()
    fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True) 

    return None
예제 #2
0
def compute_Cstat(options):
    """Python program to compute C_stat
    """

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table
    import JLA_library as JLA

    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')


    # -----------  Read in the data --------------------------

    print 'There are %d SNe in the sample' % (nSNe)

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe=SNe[indices]

    C_stat=numpy.zeros(9*nSNe*nSNe).reshape(3*nSNe,3*nSNe)

    for i,SN in enumerate(SNe):
        cov=numpy.zeros(9).reshape(3,3)
        cov[0,0]=SN['dmb']**2.
        cov[1,1]=SN['dx1']**2.
        cov[2,2]=SN['dcolor']**2.
        cov[0,1]=SN['cov_m_s']
        cov[0,2]=SN['cov_m_c']
        cov[1,2]=SN['cov_s_c']
        # symmetrise
        cov=cov+cov.T-numpy.diag(cov.diagonal())
        C_stat[i*3:i*3+3,i*3:i*3+3]=cov

    # -----------  Read in the base matrix computed using salt2_stat.cc ------------

    if options.base!=None:
        C_stat+=fits.getdata(options.base)

    date = JLA.get_date()
    fits.writeto('C_stat_%s.fits' % date,C_stat,clobber=True) 

    return
예제 #3
0
        "-l",
        "--lcfits",
        dest="lcfits",
        default="lightCurveFits",
        help="Key in config file pointing to lightcurve fit parameters")

    (options, args) = parser.parse_args()

    params = JLA.build_dictionary(options.config)

    lcfile = JLA.get_full_path(params[options.lcfits])
    SN_data = Table.read(lcfile, format='fits')

    SN_list_long = np.genfromtxt(options.SNlist, usecols=(0), dtype='S30')
    SN_list = [
        name.replace('lc-', '').replace('.list', '') for name in SN_list_long
    ]

    SN_indices = JLA.reindex_SNe(SN_list, SN_data)
    SN_data = SN_data[SN_indices]

    velfile = JLA.get_full_path(params['velocityField'])
    vel_correction = VelocityCorrection(velfile)
    #z_correction = vel_correction.apply(SN_data)

    C_pecvel = vel_correction.covmat_pecvel(SN_data)

    date = JLA.get_date()

    fits.writeto('C_pecvel_%s.fits' % date, np.array(C_pecvel), clobber=True)
예제 #4
0
def compute_rel_size(options):
    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table
    import JLA_library as JLA
    from astropy.cosmology import FlatwCDM
    import os

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)

    # ---------- Read in the SNe list -------------------------

    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-',
                                                    '').replace('.list', '')

    # -----------  Read in the data JLA --------------------------

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    nSNe = len(SNe)
    print 'There are %d SNe in this sample' % (nSNe)

    # sort it to match the listing in options.SNlist
    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    # ---------- Compute the Jacobian ----------------------
    # The Jacobian is an m by 4 matrix, where m is the number of SNe
    # The columns are ordered in terms of Om, w, alpha and beta

    J = []
    JLA_result = {
        'Om': 0.303,
        'w': -1.00,
        'alpha': 0.141,
        'beta': 3.102,
        'M_B': -19.05
    }
    offset = {'Om': 0.01, 'w': 0.01, 'alpha': 0.01, 'beta': 0.01, 'M_B': 0.01}
    nFit = 4

    cosmo1 = FlatwCDM(name='SNLS3+WMAP7',
                      H0=70.0,
                      Om0=JLA_result['Om'],
                      w0=JLA_result['w'])

    # Varying Om
    cosmo2 = FlatwCDM(name='SNLS3+WMAP7',
                      H0=70.0,
                      Om0=JLA_result['Om'] + offset['Om'],
                      w0=JLA_result['w'])
    J.append(5 * numpy.log10((cosmo1.luminosity_distance(SNe['zcmb']) /
                              cosmo2.luminosity_distance(SNe['zcmb']))[:, 0]))

    # varying alpha
    J.append(1.0 * offset['alpha'] * SNe['x1'][:, 0])

    # varying beta
    J.append(-1.0 * offset['beta'] * SNe['color'][:, 0])

    # varying M_B

    J.append(offset['M_B'] * numpy.ones(nSNe))

    J = numpy.matrix(
        numpy.concatenate((J)).reshape(nSNe, nFit, order='F') * 100.)

    # Set up the covariance matrices

    systematic_terms = [
        'bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat'
    ]

    covmatrices = {
        'bias': params['bias'],
        'cal': params['cal'],
        'host': params['host'],
        'dust': params['dust'],
        'model': params['model'],
        'nonia': params['nonia'],
        'pecvel': params['pecvel'],
        'stat': params['stat']
    }

    if options.type in systematic_terms:
        print "Using %s for the %s term" % (options.name, options.type)
        covmatrices[options.type] = options.name

    # Combine the matrices to compute the full covariance matrix, and compute its inverse
    if options.all:
        #read in the user provided matrix, otherwise compute it, and write it out
        C = fits.getdata(JLA.get_full_path(params['all']))
    else:
        C = add_covar_matrices(covmatrices, params['diag'])
        date = JLA.get_date()
        fits.writeto('C_total_%s.fits' % (date), C, clobber=True)

    Cinv = numpy.matrix(C).I

    # Construct eta, a 3n vector

    eta = numpy.zeros(3 * nSNe)
    for i, SN in enumerate(SNe):
        eta[3 * i] = SN['mb']
        eta[3 * i + 1] = SN['x1']
        eta[3 * i + 2] = SN['color']

    # Construct A, a n x 3n matrix
    A = numpy.zeros(nSNe * 3 * nSNe).reshape(nSNe, 3 * nSNe)

    for i in range(nSNe):
        A[i, 3 * i] = 1.0
        A[i, 3 * i + 1] = JLA_result['alpha']
        A[i, 3 * i + 2] = -JLA_result['beta']

    # ---------- Compute W  ----------------------
    # W has shape m * 3n, where m is the number of fit paramaters.

    W = (J.T * Cinv * J).I * J.T * Cinv * numpy.matrix(A)

    # Note that (J.T * Cinv * J) is a m x m matrix, where m is the number of fit parameters

    # ----------- Compute V_x, where x represents the systematic uncertainty

    result = []

    for term in systematic_terms:
        cov = numpy.matrix(fits.getdata(JLA.get_full_path(covmatrices[term])))
        if 'C_stat' in covmatrices[term]:
            # Add diagonal term from Eq. 13 to the magnitude
            sigma = numpy.genfromtxt(
                JLA.get_full_path(params['diag']),
                comments='#',
                usecols=(0, 1, 2),
                dtype='f8,f8,f8',
                names=['sigma_coh', 'sigma_lens', 'sigma_pecvel'])
            for i in range(nSNe):
                cov[3 * i, 3 * i] += sigma['sigma_coh'][i]**2 + sigma[
                    'sigma_lens'][i]**2 + sigma['sigma_pecvel'][i]**2

        V = W * cov * W.T
        result.append(V[0, 0])

    print '%20s\t%5s\t%5s\t%s' % ('Term', 'sigma', 'var', 'Percentage')
    for i, term in enumerate(systematic_terms):
        if options.type != None and term == options.type:
            print '* %18s\t%5.4f\t%5.4f\t%4.1f' % (term, numpy.sqrt(
                result[i]), result[i], result[i] / numpy.sum(result) * 100.)
        else:
            print '%20s\t%5.4f\t%5.4f\t%4.1f' % (term, numpy.sqrt(
                result[i]), result[i], result[i] / numpy.sum(result) * 100.)

    print '%20s\t%5.4f' % ('Total', numpy.sqrt(numpy.sum(result)))

    return
예제 #5
0
def compute_Ccal(options):
    """Python program to compute Ccal
    """

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table
    import multiprocessing as mp
    import matplotlib.pyplot as plt

    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)
    try:
        salt_prefix = params['saltPrefix']
    except KeyError:
        salt_prefix = ''

    # ---------- Read in the SNe list -------------------------

    SNeList = Table(numpy.genfromtxt(options.SNlist,
                                     usecols=(0, 2),
                                     dtype='S30,S100',
                                     names=['id', 'lc']))


    for i,SN in enumerate(SNeList):
        SNeList['id'][i]=SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '')

    # ----------  Read in the SN light curve fits ------------
    # This is used to get the SN redshifts which are used in smoothing the Jacbian

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    # Make sure that the order is correct
    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]
    if len(indices) != len(SNeList['id']):
        print "We are missing SNe"
        exit()

    # -----------  Set up the structures to handle the different salt models -------
    # The first model is the unperturbed salt model
    SALTpath=JLA.get_full_path(params['saltPath'])

    SALTmodels=JLA.SALTmodels(SALTpath+'/saltModels.list')
    nSALTmodels=len(SALTmodels)-1
    print SALTmodels, nSALTmodels

    nSNe=len(SNeList)
    print 'There are %d SNe in the sample' % (nSNe)
    print 'There are %d SALT models' % (nSALTmodels)

    # Add a survey column, which we use with the smoothing, and the redshift
    SNeList['survey'] = numpy.zeros(nSNe,'a10')
    SNeList['z'] = SNe['zhel']

    # Identify the SNLS, SDSS, HST and low-z SNe. We use this when smoothing the Jacobian
    # There is rather inelegant 
    # We still need to allow for Vanina's naming convention when doing this for the photometric sample
    for i,SN in enumerate(SNeList):
        if SN['id'][0:4]=='SDSS':
            SNeList['survey'][i]='SDSS'
        elif SN['id'][2:4] in ['D1','D2','D3','D4']:
            SNeList['survey'][i]='SNLS'
        elif SN['id'][0:3] in ['DES']:
            SNeList['survey'][i]='DES'
        elif SN['id'][0:2]=='sn':
            SNeList['survey'][i]='nearby'
        else:
            SNeList['survey'][i]='high-z'

    # -----------   Read in the calibration matrix -----------------
    Cal=fits.getdata(JLA.get_full_path(params['C_kappa']))

    # Multiply the ZP submatrix by 100^2, and the two ZP-offset submatrices by 100,
    # because the magnitude offsets are 0.01 mag and the units of the covariance matrix are mag
    size=Cal.shape[0] / 2
    Cal[0:size,0:size]=Cal[0:size,0:size]*10000.
    Cal[0:size,size:]*=Cal[0:size,size:]*100.
    Cal[size:,0:size]=Cal[size:,0:size]*100.


    # ------------- Create an area to work in -----------------------
    workArea = JLA.get_full_path(options.workArea)
    try:
        os.mkdir(workArea)
    except:
        pass

    # -----------   The lightcurve fitting --------------------------

    firstSN=True
    
    log=open('log.txt','w')

    for i,SN in enumerate(SNeList):
        J=[]
        try:
            os.mkdir(workArea+'/'+SN['id'])
        except:
            pass

        #firstModel=True
        print 'Examining SN #%d %s' % (i+1,SN['id'])

        # Set up the number of processes
        pool = mp.Pool(processes=int(options.processes))
        # runSALT is the program that does the lightcurve fitting
        results = [pool.apply(runSALT, args=(SALTpath,
                                             SALTmodel,
                                             salt_prefix,
                                             SN['lc'],
                                             SN['id'])) for SALTmodel in SALTmodels]
        for result in results[1:]:
            # The first model is the unperturbed model
            dM,dX,dC=JLA.computeOffsets(results[0],result)
            J.extend([dM,dX,dC])
        pool.close() # This prevents to many open files

        if firstSN:
            J_new=numpy.array(J).reshape(nSALTmodels,3).T
            firstSN=False
        else:
            J_new=numpy.concatenate((J_new,numpy.array(J).reshape(nSALTmodels,3).T),axis=0)

        log.write('%d rows %d columns\n' % (J_new.shape[0],J_new.shape[1]))

    log.close()

    # Compute the new covariance matrix J . Cal . J.T produces a 3 * n_SN by 3 * n_SN matrix
    # J=jacobian

    J_smoothed=numpy.array(J_new)*0.0
    J=J_new

    # We need to concatenate the different samples ...
    
    if options.Plot:
        try:
            os.mkdir('figures')
        except:
            pass               

    nPoints={'SNLS':11,'SDSS':11,'nearby':11,'high-z':11,'DES':11} 
    #sampleList=['nearby','DES']
    sampleList=params['smoothList'].split(',')
    if options.smoothed:
        # We smooth the Jacobian 
        # We roughly follow the method descibed in the footnote of p13 of B14
        for sample in sampleList:
            selection=(SNeList['survey']==sample)
            J_sample=J[numpy.repeat(selection,3)]

            for sys in range(nSALTmodels):
                # We need to convert to a numpy array
                # There is probably a better way
                redshifts=numpy.array([z for z in SNeList[selection]['z']])
                derivatives_mag=J_sample[0::3][:,sys]  # [0::3] = [0,3,6 ...] Every 3rd one
                #print redshifts.shape, derivatives_mag.shape, nPoints[sample]
                forPlotting_mag,res_mag=JLA.smooth(redshifts,derivatives_mag,nPoints[sample])
                derivatives_x1=J_sample[1::3][:,sys]
                forPlotting_x1,res_x1=JLA.smooth(redshifts,derivatives_x1,nPoints[sample])
                derivatives_c=J_sample[2::3][:,sys]
                forPlotting_c,res_c=JLA.smooth(redshifts,derivatives_c,nPoints[sample])

                # We need to insert the new results into the smoothed Jacobian matrix in the correct place
                # The Jacobian ia a 3 * n_SN by nSATLModels matrix
                # The rows are ordered by the mag, stretch and colour of each SNe.
                J_smoothed[numpy.repeat(selection,3),sys]=numpy.concatenate([res_mag,res_x1,res_c]).reshape(3,selection.sum()).ravel('F')

                # If required, make some plots as a way of checking 

                if options.Plot:
                    print 'Creating plot for systematic %d and sample %s' % (sys, sample) 
                    fig=plt.figure()
                    ax1=fig.add_subplot(311)
                    ax2=fig.add_subplot(312)
                    ax3=fig.add_subplot(313)
                    ax1.plot(redshifts,derivatives_mag,'bo')
                    ax1.plot(forPlotting_mag[0],forPlotting_mag[1],'r-')
                    ax1.set_ylabel('mag')
                    ax2.plot(redshifts,derivatives_x1,'bo')
                    ax2.plot(forPlotting_x1[0],forPlotting_x1[1],'r-')
                    ax2.set_ylabel('x1')
                    ax3.plot(redshifts,derivatives_c,'bo')
                    ax3.plot(forPlotting_c[0],forPlotting_c[1],'r-')
                    ax3.set_ylabel('c')
                    ax3.set_xlabel('z')
        
                    plt.savefig('figures/%s_sys_%d.png' % (sample,sys))
                    plt.close()

    date=JLA.get_date()


    fits.writeto('J_%s.fits' % (date) ,J,clobber=True) 
    fits.writeto('J_smoothed_%s.fits' % (date), J_smoothed,clobber=True) 

    # Some matrix arithmatic
    # C_cal is a nSALTmodels by nSALTmodels matrix

    # Read in a smoothed Jacobian specified in the options
    if options.jacobian != None:
        J_smoothed=fits.getdata(options.jacobian)
#    else:
#        # Replace the NaNs in your smoothed Jacobian with zero
#        J_smoothed[numpy.isnan(J_smoothed)]=0

    C=numpy.matrix(J_smoothed)*numpy.matrix(Cal)*numpy.matrix(J_smoothed).T
    if options.output==None:
        fits.writeto('C_cal_%s.fits' % (date), numpy.array(C), clobber=True) 
    else:
        fits.writeto('%s.fits' % (options.output),numpy.array(C),clobber=True)

    return
예제 #6
0
def compute_bias(options):

    import numpy
    import astropy.io.fits as fits
    import JLA_library as JLA
    from astropy.table import Table
    from astropy.cosmology import FlatwCDM
    from  scipy.optimize import leastsq
    import matplotlib.pyplot as plt
    from scipy.stats import t


    # -----------  Read in the configuration file ------------
    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = Table(numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc']))
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')
    print 'There are %d SNe' % (nSNe)

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe=SNe[indices]

    # Add a column that records the error in the bias correction
    SNe['e_bias'] = numpy.zeros(nSNe,'f8')

    # Read in the bias correction (see, for example, Fig.5 in B14)
    # Fit a polynomial to the data
    # Determine the uncertainties

    bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']),
                                  skip_header=4,
                                  usecols=(0, 1, 2, 3),
                                  dtype='S10,f8,f8,f8',
                                  names=['sample', 'redshift', 'bias', 'e_bias'])

    if options.plot:
        fig=plt.figure()
        ax=fig.add_subplot(111)
        colour={'nearby':'b','SNLS':'r','SDSS':'g','DES':'k'}

    for sample in numpy.unique(bias['sample']):
        selection=(bias['sample']==sample)
        guess=[0,0,0]

        print bias[selection]
        plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
                                             bias[selection]['redshift'],
                                             bias[selection]['e_bias'],
                                             'poly'), full_output=1)

        if plsq[4] in [1,2,3,4]:
            print 'Solution for %s found' % (sample)

        if options.plot:
            ax.errorbar(bias[selection]['redshift'],
                    bias[selection]['bias'],
                    yerr=bias[selection]['e_bias'],
                    ecolor='k',
                    color=colour[sample],
                    fmt='o',
                    label=sample)
            z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001)
            ax.plot(z,poly(z,plsq[0]),color=colour[sample])

        # For each SNe, determine the uncerainty in the correction. We use the approach descibed in
        # https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html
        
        # Compute the chi-sq.
        chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum()
        dof=selection.sum()-len(guess)
        print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof)

        alpha=0.315 # Confidence interval is 100 * (1-alpha)
        # Compute the upper alpha/2 value for the student t distribution with dof
        thresh=t.ppf((1-alpha/2.0), dof)
        
        if options.plot and sample!='nearby':
            # The following is only valid for polynomial fitting functions, and we do not compute it for the nearby sample
            upper_curve=[]
            lower_curve=[]
            for x in z:
                vect=numpy.matrix([1,x,x**2.])
                offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
                upper_curve.append(poly(x,plsq[0])+offset)
                lower_curve.append(poly(x,plsq[0])-offset)

            ax.plot(z,lower_curve,'--',color=colour[sample])
            ax.plot(z,upper_curve,'--',color=colour[sample])

        # Compute the error in the bias
        # We increase the absolute value
        # In other words, if the bias is negative, we subtract the error to make it even more negative
        # This is to get the correct sign in the off diagonal elements
        # We assume 100% correlation between SNe
        for i,SN in enumerate(SNe):
            if SN['zcmb'] > 0:
                redshift = SN['zcmb']
            else:
                redshift = SN['zhel']
            if JLA.survey(SN) == sample:
                # For the nearby SNe, the uncertainty in the bias correction is the bias correction itself
                if sample=='nearby':
                    SNe['e_bias'][i]=poly(redshift,plsq[0])
                    #print SN['name'],redshift, SNe['e_bias'][i]
                else:
                    vect = numpy.matrix([1,redshift,redshift**2.])
                    if poly(redshift,plsq[0]) > 0:
                        sign = 1
                    else:
                        sign = -1

                    SNe['e_bias'][i] = sign * thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])

                # We are getting some unrealistcally large values

    date = JLA.get_date()

    if options.plot:
        ax.legend()
        plt.savefig('C_bias_%s.png' % (date))
        plt.close()

    # Compute the bias matrix
    # 

    Zero=numpy.zeros(nSNe)
    H=numpy.concatenate((SNe['e_bias'],Zero,Zero)).reshape(3,nSNe).ravel(order='F')
    C_bias = numpy.matrix(H).T * numpy.matrix(H)

    fits.writeto('C_bias_%s.fits' % (date),C_bias,clobber=True) 

    return None
예제 #7
0
def compute_Ccal(options):
    """Python program to compute Ccal
    """

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table

    import multiprocessing as mp
    import matplotlib.pyplot as plt

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)
    try:
        salt_prefix = params['saltPrefix']
    except KeyError:
        salt_prefix = ''

    # ---------- Read in the SNe list -------------------------

    SNeList = Table(
        numpy.genfromtxt(options.SNlist,
                         usecols=(0, 2),
                         dtype='S30,S100',
                         names=['id', 'lc']))

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-',
                                                    '').replace('.list', '')

    # ----------  Read in the SN light curve fits ------------
    # This is mostly used to get the redshifts of the SNe.
    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    # Make sure that the order is correct
    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    # -----------  Set up the structures to handle the different salt models -------
    SALTpath = JLA.get_full_path(params['saltPath'])

    SALTmodels = JLA.SALTmodels(SALTpath + '/saltModels.list')
    nSALTmodels = len(SALTmodels) - 1
    #print SALTmodels, nSALTmodels

    nSNe = len(SNeList)
    print 'There are %d SNe in the sample' % (nSNe)
    print 'There are %d SALT models' % (nSALTmodels)

    # Add a survey column, which we use with the smoothing, and the redshift
    SNeList['survey'] = numpy.zeros(nSNe, 'a10')
    SNeList['z'] = SNe['zhel']

    # Identify the SNLS, SDSS, HST and low-z SNe. We use this when smoothing the Jacobian
    # There is probably a more elegant and efficient way of doing this

    # We need to allow for Vanina's naming convention when doing this for the photometric sample

    for i, SN in enumerate(SNeList):
        if SN['id'][0:4] == 'SDSS':
            SNeList['survey'][i] = 'SDSS'
        elif SN['id'][2:4] in ['D1', 'D2', 'D3', 'D4']:
            SNeList['survey'][i] = 'SNLS'
        elif SN['id'][0:2] == 'sn':
            SNeList['survey'][i] = 'nearby'
        else:
            SNeList['survey'][i] = 'high-z'

    # -----------   Read in the calibration matrix -----------------

    Cal = fits.getdata(JLA.get_full_path(params['C_kappa']))
    # Multiply the ZP submatrix by 100^2, and the two ZP-offset matrices by 100,
    # because the magnitude offsets are 0.01 mag and the units of the covariance matrix are mag
    Cal[0:37, 0:37] = Cal[0:37, 0:37] * 10000.
    #
    Cal[0:37, 37:] *= Cal[0:37, 37:] * 100.
    Cal[37:, 0:37] = Cal[37:, 0:37] * 100.

    #print SALTpath

    # ------------- Create an area to work in -----------------------

    try:
        os.mkdir(options.workArea)
    except:
        pass

    # -----------   The lightcurve fitting --------------------------

    firstSN = True

    log = open('log.txt', 'w')

    for i, SN in enumerate(SNeList):

        J = []
        try:
            os.mkdir(options.workArea + '/' + SN['id'])
        except:
            pass

        firstModel = True
        print 'Examining SN #%d %s' % (i + 1, SN['id'])

        # Set up the number of processes
        pool = mp.Pool(processes=int(options.processes))
        results = [
            pool.apply(runSALT,
                       args=(SALTpath, SALTmodel, salt_prefix, SN['lc'],
                             SN['id'])) for SALTmodel in SALTmodels
        ]
        for result in results[1:]:
            dM, dX, dC = JLA.computeOffsets(results[0], result)
            J.extend([dM, dX, dC])
        pool.close()  # This prevents to many open files
        if firstSN:
            J_new = numpy.array(J).reshape(nSALTmodels, 3).T
            firstSN = False
        else:
            J_new = numpy.concatenate(
                (J_new, numpy.array(J).reshape(nSALTmodels, 3).T), axis=0)

        log.write('%d rows %d columns\n' % (J_new.shape[0], J_new.shape[1]))

    log.close()

    # Compute the new covariance matrix J . Cal . J.T produces a 3 * n_SN by 3 * n_SN matrix
    # J=jacobian

    J_smoothed = numpy.array(J_new) * 0.0
    J = J_new

    # We need to concatenate the different samples ...

    if options.Plot:
        try:
            os.mkdir('figures')
        except:
            pass

    if options.smoothed:
        # We smooth the Jacobian
        # We roughly follow the method descibed in the footnote of p13 of B14
        # Note that HST is smoothed as well.
        nPoints = {'SNLS': 11, 'SDSS': 11, 'nearby': 11, 'high-z': 11}
        for sample in ['SNLS', 'SDSS', 'nearby']:
            selection = (SNeList['survey'] == sample)
            J_sample = J[numpy.repeat(selection, 3)]

            for sys in range(nSALTmodels):
                # We need to convert to a numpy array
                # There is probably a better way
                redshifts = numpy.array(
                    [z[0] for z in SNeList[selection]['z']])
                derivatives_mag = J_sample[
                    0::3][:, sys]  # [0::3] = [0,3,6 ...] Every 3rd one
                #print redshifts.shape, derivatives_mag.shape, nPoints[sample]
                forPlotting_mag, res_mag = JLA.smooth(redshifts,
                                                      derivatives_mag,
                                                      nPoints[sample])
                derivatives_x1 = J_sample[1::3][:, sys]
                forPlotting_x1, res_x1 = JLA.smooth(redshifts, derivatives_x1,
                                                    nPoints[sample])
                derivatives_c = J_sample[2::3][:, sys]
                forPlotting_c, res_c = JLA.smooth(redshifts, derivatives_c,
                                                  nPoints[sample])

                # We need to insert the new results into the smoothed Jacobian matrix in the correct place
                # The Jacobian ia a 3 * n_SN by nSATLModels matrix
                # The rows are ordered by the mag, stretch and colour of each SNe.
                J_smoothed[numpy.repeat(selection, 3),
                           sys] = numpy.concatenate(
                               [res_mag, res_x1,
                                res_c]).reshape(3, selection.sum()).ravel('F')

                # If required, make some plots as a way of checking

                if options.Plot:
                    print 'Creating plot for systematic %d and sample %s' % (
                        sys, sample)
                    fig = plt.figure()
                    ax1 = fig.add_subplot(311)
                    ax2 = fig.add_subplot(312)
                    ax3 = fig.add_subplot(313)
                    ax1.plot(redshifts, derivatives_mag, 'bo')
                    ax1.plot(forPlotting_mag[0], forPlotting_mag[1], 'r-')
                    ax2.plot(redshifts, derivatives_x1, 'bo')
                    ax2.plot(forPlotting_x1[0], forPlotting_x1[1], 'r-')
                    ax3.plot(redshifts, derivatives_c, 'bo')
                    ax3.plot(forPlotting_c[0], forPlotting_c[1], 'r-')

                    plt.savefig('figures/%s_sys_%d.png' % (sample, sys))
                    plt.close()

    date = JLA.get_date()

    fits.writeto('J_%s.fits' % (date), J, clobber=True)
    fits.writeto('J_smoothed_%s.fits' % (date), J_smoothed, clobber=True)

    # Some matrix arithmatic
    # C_cal is a nSALTmodels by nSALTmodels matrix

    # Read in a smoothed Jacobian specified in the options
    if options.jacobian != None:
        J_smoothed = fits.getdata(options.jacobian)


#    else:
#        # Replace the NaNs in your smoothed Jacobian with zero
#        J_smoothed[numpy.isnan(J_smoothed)]=0

    C = numpy.matrix(J_smoothed) * numpy.matrix(Cal) * numpy.matrix(
        J_smoothed).T
    if options.output == None:
        fits.writeto('C_cal_%s.fits' % (date), numpy.array(C), clobber=True)
    else:
        fits.writeto('%s.fits' % (options.output),
                     numpy.array(C),
                     clobber=True)

    return
예제 #8
0
    parser = OptionParser()

    parser.add_option("-c", "--config", dest="config", default="JLA.config",
                      help="Parameter file containing the location of various JLA parameters")

    parser.add_option("-s", "--SNlist", dest="SNlist",
                      help="List of SNe")

    parser.add_option("-l", "--lcfits", dest="lcfits", default="lightCurveFits",
                      help="Key in config file pointing to lightcurve fit parameters")
    
    parser.add_option("-o", "--output", dest="output",default="sigma_mu.txt", 
                  help="Output")

    (options, args) = parser.parse_args()

    params = JLA.build_dictionary(options.config)
    
    lcfile = JLA.get_full_path(params[options.lcfits])
    SN_data = Table.read(lcfile, format='fits')

    SN_list_long = np.genfromtxt(options.SNlist, usecols=(0), dtype='S30')
    SN_list = [name.replace('lc-', '').replace('.list', '').replace('_smp','') for name in SN_list_long]
    SN_indices = JLA.reindex_SNe(SN_list, SN_data)
    SN_data = SN_data[SN_indices]

    sigma_diag = compute_diag(SN_data)

    np.savetxt(options.output,sigma_diag, header='coh lens pecvel')
예제 #9
0
def compute_rel_size(options):
    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table
    import JLA_library as JLA
    from astropy.cosmology import FlatwCDM
    import os
    
    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)

    # ---------- Read in the SNe list -------------------------

    SNeList=numpy.genfromtxt(options.SNlist,usecols=(0,2),dtype='S30,S200',names=['id','lc'])

    for i,SN in enumerate(SNeList):
        SNeList['id'][i]=SNeList['id'][i].replace('lc-','').replace('.list','')

    # -----------  Read in the data JLA --------------------------

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    nSNe=len(SNe)
    print 'There are %d SNe in this sample' % (nSNe)

    # sort it to match the listing in options.SNlist
    indices = JLA.reindex_SNe(SNeList['id'], SNe)        
    SNe=SNe[indices]

    # ---------- Compute the Jacobian ----------------------
    # The Jacobian is an m by 4 matrix, where m is the number of SNe
    # The columns are ordered in terms of Om, w, alpha and beta

    J=[]
    JLA_result={'Om':0.303,'w':-1.00,'alpha':0.141,'beta':3.102,'M_B':-19.05}
    offset={'Om':0.01,'w':0.01,'alpha':0.01,'beta':0.01,'M_B':0.01}
    nFit=4

    cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om'], w0=JLA_result['w'])

    # Varying Om
    cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om']+offset['Om'], w0=JLA_result['w'])
    J.append(5*numpy.log10((cosmo1.luminosity_distance(SNe['zcmb'])/cosmo2.luminosity_distance(SNe['zcmb']))[:,0]))

    # varying alpha
    J.append(1.0*offset['alpha']*SNe['x1'][:,0])

    # varying beta
    J.append(-1.0*offset['beta']*SNe['color'][:,0])

    # varying M_B

    J.append(offset['M_B']*numpy.ones(nSNe))
    
    J = numpy.matrix(numpy.concatenate((J)).reshape(nSNe,nFit,order='F') * 100.)

    # Set up the covariance matrices

    systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat']

    covmatrices = {'bias':params['bias'],
                   'cal':params['cal'],
                   'host':params['host'],
                   'dust':params['dust'],
                   'model':params['model'],
                   'nonia':params['nonia'],
                   'pecvel':params['pecvel'],
                   'stat':params['stat']}


    if options.type in systematic_terms:
        print "Using %s for the %s term" % (options.name,options.type) 
        covmatrices[options.type]=options.name

    # Combine the matrices to compute the full covariance matrix, and compute its inverse
    if options.all:
        #read in the user provided matrix, otherwise compute it, and write it out
        C=fits.getdata(JLA.get_full_path(params['all']))
    else:
        C=add_covar_matrices(covmatrices,params['diag'])
        date=JLA.get_date()
        fits.writeto('C_total_%s.fits' % (date), C, clobber=True)

    Cinv=numpy.matrix(C).I


    # Construct eta, a 3n vector

    eta=numpy.zeros(3*nSNe)
    for i,SN in enumerate(SNe):
        eta[3*i]=SN['mb']
        eta[3*i+1]=SN['x1']
        eta[3*i+2]=SN['color']

    # Construct A, a n x 3n matrix
    A=numpy.zeros(nSNe*3*nSNe).reshape(nSNe,3*nSNe)

    for i in range(nSNe):
        A[i,3*i]=1.0
        A[i,3*i+1]=JLA_result['alpha']
        A[i,3*i+2]=-JLA_result['beta']

    # ---------- Compute W  ----------------------
    # W has shape m * 3n, where m is the number of fit paramaters.

    W=(J.T * Cinv * J).I * J.T* Cinv* numpy.matrix(A)

    # Note that (J.T * Cinv * J) is a m x m matrix, where m is the number of fit parameters

    # ----------- Compute V_x, where x represents the systematic uncertainty

    result=[]

    for term in systematic_terms:
        cov=numpy.matrix(fits.getdata(JLA.get_full_path(covmatrices[term])))
        if 'C_stat' in covmatrices[term]:
            # Add diagonal term from Eq. 13 to the magnitude
            sigma = numpy.genfromtxt(JLA.get_full_path(params['diag']),comments='#',usecols=(0,1,2),dtype='f8,f8,f8',names=['sigma_coh','sigma_lens','sigma_pecvel'])
            for i in range(nSNe):
                cov[3*i,3*i] += sigma['sigma_coh'][i] ** 2 + sigma['sigma_lens'][i] ** 2 + sigma['sigma_pecvel'][i] ** 2



        V=W * cov * W.T
        result.append(V[0,0])

    print '%20s\t%5s\t%5s\t%s' % ('Term','sigma','var','Percentage')
    for i,term in enumerate(systematic_terms):
        if options.type!=None and term==options.type:
            print '* %18s\t%5.4f\t%5.4f\t%4.1f' % (term,numpy.sqrt(result[i]),result[i],result[i]/numpy.sum(result)*100.)
        else:
            print '%20s\t%5.4f\t%5.4f\t%4.1f' % (term,numpy.sqrt(result[i]),result[i],result[i]/numpy.sum(result)*100.)

    print '%20s\t%5.4f' % ('Total',numpy.sqrt(numpy.sum(result)))

    return
예제 #10
0
def compute_nonIa(options):
    """Pythom program to compute the systematic unsertainty related to
    the contamimation from Ibc SNe"""

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table, MaskedColumn, vstack
    import JLA_library as JLA

    # The program computes the covaraince for the spectroscopically confirmed SNe Ia only
    # The prgram assumes that the JLA SNe are first in any list
    # Taken from C11

    # Inputs are the rates of SNe Ia and Ibc, the most likely contaminant

    # Ia rate - Perett et al.
    # SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom
    # SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson

    # The bright Ibc population
    # d_bc = 0.25     # The offset in magnitude between the Ia and bright Ibc
    # s_bc = 0.25     # The magnitude spread
    # f_bright = 0.25 # The fraction of Ibc SN that are bright

    # Simulate the characteristics of the SNLS survey
    # Apply outlier rejection
    # All SNe that pass the cuts are included in the sample

    # One then has a mixture of SNe Ia and SNe Ibc
    # and the average magnitude at each redshift is biased. This
    # is called the raw bias. One multiplies the raw bias by the fraction of
    # objects classified as SNe Ia*

    # The results are presented in 7 redshift bins defined in table 14 of C11
    # We use these results to generate the matrix.
    # Only the SNLS SNe in the JLA sample are considered.
    # For the photometrically selected sample and other surveys, this will probably be different
    # JLA compute this for the SNLS sample only

    # We assume that the redshift in this table refers to the left hand edge of each bin

    z_bin = numpy.array([0.0, 0.1, 0.26, 0.41, 0.57, 0.72, 0.89, 1.04])
    raw_bias = numpy.array(
        [0.0, 0.015, 0.024, 0.024, 0.024, 0.023, 0.026, 0.025])
    f_star = numpy.array([0.0, 0.00, 0.06, 0.14, 0.17, 0.24, 0.50, 0.00])

    # The covaraiance between SNe Ia in the same redshift bin is fully correlated
    # Otherwise, it is uncorrelated

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)

    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])

    nSNe = len(SNeList)
    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-',
                                                    '').replace('.list', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    # Add a bin column and a column that specified of the covariance is non-zero
    SNe['bin'] = 0
    SNe['eval'] = False

    # make order of data (in SNe) match SNeList

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    # Identify the SNLS SNe in the JLA sample

    for i, SN in enumerate(SNe):
        if SN['source'][0] == 'JLA' and SN['name'][0][2:4] in [
                'D1', 'D2', 'D3', 'D4'
        ]:
            SNe['eval'][i] = True

    # Work out which redshift bin each SNe belongs to
    # In numpy.digitize, the bin number starts at 1, so we subtract 1
    SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin) - 1

    # Build the covariance matrix

    C_nonIa = numpy.zeros(nSNe * 3 * nSNe * 3).reshape(nSNe * 3, nSNe * 3)

    # It is only computes the covariance for the spectroscopically confirmed SNLS SNe
    # We assume that covariance between redshift bins is uncorrelated

    for i in range(nSNe):
        bin1 = SNe['bin'][i]
        for j in range(nSNe):
            bin2 = SNe['bin'][j]
            if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2:
                C_nonIa[3 * i, 3 *
                        j] = (raw_bias[bin1] *
                              f_star[bin1]) * (raw_bias[bin2] * f_star[bin2])

    date = JLA.get_date()

    fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True)

    return
예제 #11
0
def compute_nonIa(options):
    """Pythom program to compute the systematic unsertainty related to
    the contamimation from Ibc SNe"""

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table, MaskedColumn, vstack
    import JLA_library as JLA

    # The program computes the covaraince for the spectroscopically confirmed SNe Ia only
    # The prgram assumes that the JLA SNe are first in any list
    # Taken from C11

    # Inputs are the rates of SNe Ia and Ibc, the most likely contaminant

    # Ia rate - Perett et al.
    # SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom
    # SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson

    # The bright Ibc population
    # d_bc = 0.25     # The offset in magnitude between the Ia and bright Ibc
    # s_bc = 0.25     # The magnitude spread
    # f_bright = 0.25 # The fraction of Ibc SN that are bright

    # Simulate the characteristics of the SNLS survey
    # Apply outlier rejection
    # All SNe that pass the cuts are included in the sample

    # One then has a mixture of SNe Ia and SNe Ibc
    # and the average magnitude at each redshift is biased. This
    # is called the raw bias. One multiplies the raw bias by the fraction of
    # objects classified as SNe Ia*

    # The results are presented in 7 redshift bins defined in table 14 of C11
    # We use these results to generate the matrix.
    # Only the SNLS SNe in the JLA sample are considered.
    # For the photometrically selected sample and other surveys, this will probably be different
    # JLA compute this for the SNLS sample only

    # We assume that the redshift in this table refers to the left hand edge of each bin

    z_bin = numpy.array([0.0, 0.1, 0.26, 0.41, 0.57, 0.72, 0.89, 1.04])
    raw_bias = numpy.array([0.0, 0.015, 0.024, 0.024, 0.024, 0.023, 0.026, 0.025])
    f_star = numpy.array([0.0, 0.00, 0.06, 0.14, 0.17, 0.24, 0.50, 0.00])

    # The covaraiance between SNe Ia in the same redshift bin is fully correlated
    # Otherwise, it is uncorrelated

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)

    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])

    nSNe = len(SNeList)
    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    # Add a bin column and a column that specified of the covariance is non-zero
    SNe['bin'] = 0
    SNe['eval'] = False

    # make order of data (in SNe) match SNeList
    
    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    # Identify the SNLS SNe in the JLA sample

    for i, SN in enumerate(SNe):
        if SN['source'][0] == 'JLA' and SN['name'][0][2:4] in ['D1', 'D2', 'D3', 'D4']:
            SNe['eval'][i] = True

    # Work out which redshift bin each SNe belongs to
    # In numpy.digitize, the bin number starts at 1, so we subtract 1
    SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1

    # Build the covariance matrix

    C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3)

    # It is only computes the covariance for the spectroscopically confirmed SNLS SNe
    # We assume that covariance between redshift bins is uncorrelated

    for i in range(nSNe):
        bin1 = SNe['bin'][i]
        for j in range(nSNe):
            bin2 = SNe['bin'][j]
            if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2:
                C_nonIa[3*i, 3*j] = (raw_bias[bin1] * f_star[bin1])*(raw_bias[bin2] * f_star[bin2])

    date = JLA.get_date()

    fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True)

    return
예제 #12
0
def compute_nonIa(options):
    """Pythom program to compute the systematic unsertainty related to
    the contamimation from Ibc SNe"""

    import numpy
    import astropy.io.fits as fits
    from astropy.table import Table, MaskedColumn, vstack
    import JLA_library as JLA

    # The program computes the covaraince for the spectroscopically confirmed SNe Ia only
    # The prgram assumes that the JLA SNe are first in any list
    # Taken from C11

    # Inputs are the rates of SNe Ia and Ibc, the most likely contaminant

    # Ia rate - Perett et al.
    # SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom
    # SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson

    # The bright Ibc population
    # d_bc = 0.25     # The offset in magnitude between the Ia and bright Ibc
    # s_bc = 0.25     # The magnitude spread
    # f_bright = 0.25 # The fraction of Ibc SN that are bright

    # Simulate the characteristics of the SNLS survey
    # Apply outlier rejection
    # All SNe that pass the cuts are included in the sample

    # One then has a mixture of SNe Ia and SNe Ibc
    # and the average magnitude at each redshift is biased. This
    # is called the raw bias. One multiplies the raw bias by the fraction of
    # objects classified as SNe Ia*

    # The results are presented in 7 redshift bins defined in table 14 of C11
    # We use these results to generate the matrix.
    # Only the SNLS SNe in the JLA sample are considered.
    # For the photometrically selected sample and other surveys, this will probably be different
    # JLA compute this for the SNLS sample only

    # We assume that the redshift in this table refers to the left hand edge of each bin

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)
    

    data=numpy.genfromtxt(JLA.get_full_path(params['classification']),comments="#",usecols=(0,1,2),dtype=['float','float','float'],names=['redshift','raw_bias','fraction'])
    z_bin=data['redshift']
    raw_bias=data['raw_bias']
    f_star=data['fraction']
    
    # The covaraiance between SNe Ia in the same redshift bin is fully correlated
    # Otherwise, it is uncorrelated

    # -----------  Read in the configuration file ------------

    params = JLA.build_dictionary(options.config)

    SNeList = numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc'])

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','')

    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    # Add a bin column and a column that specifies if the covariance needs to be computed
    SNe['bin'] = 0
    SNe['eval'] = False

    # make the order of data (in SNe) match SNeList
    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe = SNe[indices]

    nSNe = len(SNe)
    # Identify the SNLS SNe in the JLA sample
    # We use the source and the name to decide if we want to add corrections for non-Ia contamination
    # Identify the DESS SNe in the DES sample.
    for i, SN in enumerate(SNe):
        try:
            # If the source keyword exists
            if (SN['source'] == 'JLA' or SN['source'] == 'SNLS_spec') and SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4']:
                SNe['eval'][i] = True
            elif (SN['source']== 'SNLS_photo') and (SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4'] or (SN['name'][0:2] in ['D1', 'D2', 'D3', 'D4'])):
                SNe['eval'][i] = True
        except:
            # If the source keyword does not exist
            if SN['name'][0:3]=="DES":
                SNe['eval'][i] = True

    print list(SNe['eval']).count(True)
    # Work out which redshift bin each SNe belongs to
    # In numpy.digitize, the bin number starts at 1, so we subtract 1 -- need to check...
    SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1 

    # Build the covariance matrix
    C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3)

    # It only computes the covariance for the spectroscopically confirmed SNLS SNe
    # We assume that covariance between redshift bins is uncorrelated
    # Within a redshift bin, we assume 100% covariance between SNe in that bin

    for i in range(nSNe):
        bin1 = SNe['bin'][i]
        if SNe['eval'][i]:
            print SNe['zhel'][i], bin1, raw_bias[bin1], f_star[bin1], i
        for j in range(nSNe):
            bin2 = SNe['bin'][j]
            if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2:
                C_nonIa[3*i, 3*j] = (raw_bias[bin1] * f_star[bin1])**2

    # print SNe['bin'][:239]
    # I am unable to reproduce this JLA covariance matrix

    date = JLA.get_date()

    fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True)

    return
예제 #13
0
def compute_bias(options):

    import numpy
    import astropy.io.fits as fits
    import JLA_library as JLA
    from astropy.table import Table
    from astropy.cosmology import FlatwCDM
    from  scipy.optimize import leastsq
    import matplotlib.pyplot as plt
    from scipy.stats import t


    # -----------  Read in the configuration file ------------

    params=JLA.build_dictionary(options.config)

    # -----------  Read in the SN ordering ------------------------
    SNeList = Table(numpy.genfromtxt(options.SNlist,
                               usecols=(0, 2),
                               dtype='S30,S200',
                               names=['id', 'lc']))
    nSNe = len(SNeList)

    for i, SN in enumerate(SNeList):
        SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '')
        
    lcfile = JLA.get_full_path(params[options.lcfits])
    SNe = Table.read(lcfile, format='fits')

    print 'There are %d SNe' % (nSNe)

    indices = JLA.reindex_SNe(SNeList['id'], SNe)
    SNe=SNe[indices]
    # Add a column that records the error in the bias
    SNe['e_bias'] = numpy.zeros(nSNe,'f8')


    # Read in the points from B14 figure 
    # Fit a polynomial to the data
    # Determine the uncertainties

    bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']),
                                  skip_header=3,
                                  usecols=(0, 1, 2, 3),
                                  dtype='S10,f8,f8,f8',
                                  names=['sample', 'redshift', 'bias', 'e_bias'])

    
    if options.plot:
        fig=plt.figure()
        ax=fig.add_subplot(111)
        colour={'nearby':'b','SNLS':'r','SDSS':'g'}

    for sample in numpy.unique(bias['sample']):
        selection=(bias['sample']==sample)
        guess=[0,0,0]
        
        plsq=leastsq(residuals, guess, args=(bias[selection]['bias'],
                                             bias[selection]['redshift'],
                                             bias[selection]['e_bias'],
                                             'poly'), full_output=1)

        if plsq[4] in [1,2,3,4]:
            print 'Solution for %s found' % (sample)

        if options.plot:
            ax.errorbar(bias[selection]['redshift'],
                    bias[selection]['bias'],
                    yerr=bias[selection]['e_bias'],
                    ecolor='k',
                    color=colour[sample],
                    fmt='o',
                    label=sample)
            z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001)
            ax.plot(z,poly(z,plsq[0]),color=colour[sample])

        # For each SNe, determine the uncerainty in the correction. We use the covariance martix
        # prediction bounds for the fitted curve. 
        # https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html
        
        # Compute the chi-sq.
        chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum()
        dof=selection.sum()-len(guess)
        print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof)

        alpha=0.315 # Confidence interval is 100 * (1-alpha)
        # Compute the upper alpha/2 vallue for the student t distribution with dof
        thresh=t.ppf((1-alpha/2.0), dof)
        
        if options.plot:
            # The following is only valid for polynomial fitting functions
            upper_curve=[]
            lower_curve=[]
            for x in z:
                vect=numpy.matrix([1,x,x**2.])
                offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
                upper_curve.append(poly(x,plsq[0])+offset)
                lower_curve.append(poly(x,plsq[0])-offset)

            ax.plot(z,lower_curve,'--',color=colour[sample])
            ax.plot(z,upper_curve,'--',color=colour[sample])

        # Compute the error in the bias
        # We increase the absolute vlaue
        # In other words, if the bias is negative, we subtract the error to make it even more negative
        # We assume 100% correlation between SNe
        for i,SN in enumerate(SNe):
            if JLA.survey(SN) == sample:
                if SN['zcmb'] > 0:
                    redshift = SN['zcmb']
                else:
                    redshift = SN['zhel']
                vect = numpy.matrix([1,redshift,redshift**2.])
                if poly(redshift,plsq[0]) > 0:
                    sign = 1
                else:
                    sign = -1

                SNe['e_bias'][i] = sign * thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0])
                # We are getting some unrealistcally large values

    if options.plot:
        ax.legend()
        plt.show()
        plt.close()

    # Compute the bias matrix
    # 

    date = JLA.get_date()
    Zero=numpy.zeros(nSNe)
    H=numpy.concatenate((SNe['e_bias'],Zero,Zero)).reshape(3,nSNe).ravel(order='F')

    C_bias = numpy.matrix(H)

    fits.writeto('C_bias_%s.fits' % (date),C_bias.T*C_bias,clobber=True) 

    return None