예제 #1
0
def main():
    # モデルの読み込み
    model = MODEL.L.Classifier(MODEL.CIFAR10_cifer())
    chainer.serializers.load_npz("model_final", model)
    # データの読み込み
    images, labels = chainer.datasets.get_cifar10()[1]._datasets
    # table 作成
    create_AE_file('AE.h5', model, images, labels, r=0.001, n_threads=32)
    # 評価
    df = evaluate_AE('AE.h5', model, epsilon=0.01, n_threads=32)
    # 書き出し
    df.to_csv('AE.csv')
예제 #2
0
import chainer
from chainer import cuda, Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

import matplotlib.pyplot as plt
import cv2
import pandas as pd
import MODEL  #CIFAR10_cifer()
from skimage import io

#モデルの読み込み
model = MODEL.L.Classifier(MODEL.CIFAR10_cifer())
serializers.load_npz("model_final", model)


def Print_Label(num):
    label = [
        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',
        'horse', 'ship', 'truck'
    ]
    #print("Label->{}".format(label[num]))
    return label[num]


#ニューロンを一覧で表示する
def MELMEL(data, num=10):
    #print("number : neuron")