예제 #1
0
def fisicoAmbiental(Bibliography, Entities):
    df1 = nfv.dfFix(Bibliography, "Latitude", "Topography")
    df2 = nfv.dfFix(Entities, "Water_table", "Sanitation:Personal_hygiene")
    FA_geographicIdentification = nt.concatDF(df1, df2)
    nt.mkCSV(FA_geographicIdentification, "FA_geographicIdentification.csv")

    FA_Topography = nfv.dfFix(Bibliography, "Upper bound (m)", "FOOD SECURITY")
    nt.mkCSV(FA_Topography, "FA_Topography.csv")

    FA_NaturalResource = nfv.dfFix(Bibliography, "r.1",
                                   "ACTORS (PARTNERS) IDENTIFICATION")
    FA_NaturalResource = FA_NaturalResource.dropna(axis=1)
    FA_NaturalResource = np.array(FA_NaturalResource)
    bound = []
    resource = []
    for row in FA_NaturalResource:
        for elem in row:
            bound = np.append(bound, elem)
            resource = np.append(resource, 'river')
    bound = pd.DataFrame(bound)
    bound = bound.reset_index(drop=True)
    resource = pd.DataFrame(resource)
    resource = resource.reset_index(drop=True)
    FA_NaturalResource = nt.concatDF(bound, resource)
    nt.mkCSV(FA_NaturalResource, "FA_NaturalResource.csv")
예제 #2
0
def get_applianceDF(df):
    df1 = nfv.dfFix(df, 0, 1)
    df2 = nfv.dfFix(df, 1)
    array = np.array([])
    appliance = np.array([])
    for row in np.array(df1):
        corpus = np.array([])
        for elem in row:
            corpus = np.append(corpus, [elem])
        count_vectorizer = CountVectorizer(
            stop_words=spanish_stopwords + english_stopwords,
            vocabulary=[
                'light_bulbs', 'mobile_phone', 'radio_music_pl', 'tv_dvd',
                'laptop_tablet_', 'fridge', 'electrical_sto', 'others'
            ])
        X = count_vectorizer.fit_transform(corpus)
        array = count_vectorizer.get_feature_names()
        for elem in array:
            appliance = np.append(appliance, elem)
    appliance = pd.DataFrame(appliance)
    hours = np.array([])
    for row in np.array(df2):
        for elem in row:
            hours = np.append(hours, elem)
    hours = pd.DataFrame(hours)
    hours = (hours.dropna())
    return concatDF(appliance, hours)
예제 #3
0
def seDemoCult(Entities, HouseHold):
    df1 = nfv.dfFix(Entities, "Population:Women:Infants",
                    "Population:Men:Infants_001")
    df2 = nfv.dfFix(Entities, "Population:Men:Infants_001",
                    "Fuel_Cost:Main_Fuel")
    df1 = np.array(df1)
    df2 = np.array(df2)
    array = np.array([], dtype=int)
    array = df1 + df2
    SE_population = pd.DataFrame(array)
    nt.mkCSV(SE_population, "SE_population.csv")

    SE_HouseHoldComposition = nfv.dfFix(HouseHold, "General:Old_women",
                                        "Shelter:No_Rooms")
    array = np.array(SE_HouseHoldComposition)
    array[np.isnan(array)] = 0
    array = array.astype(int)
    young = array[:, 1] + array[:, 3]
    array[:, 1] = array[:, 2]
    array[:, 2] = young
    array[:, 3] = array[:, 4]
    array = np.delete(array, 4, 1)
    SE_HouseHoldComposition = pd.DataFrame(array)
    nt.mkCSV(SE_HouseHoldComposition, "SE_HouseHoldComposition.csv")

    SE_PersonalHygiene = nfv.dfFix(Entities, "Sanitation:Personal_hygiene",
                                   "Sanitation:Excreta")
    nt.mkCSV(SE_PersonalHygiene, "SE_PersonalHygiene.csv")

    SE_CleaningMaterial = nfv.dfFix(Entities, "Sanitation:Excreta",
                                    "Sanitation:Open_defecation")
    nt.mkCSV(SE_CleaningMaterial, "SE_CleaningMaterial.csv")
예제 #4
0
def corralCrop(LocalLeaders, FarmyardCrop):
    df1 = nfv.dfFix(LocalLeaders, "Food_security:Grazing_technique",
                    "Costs:basic_basket")
    df2 = nfv.dfFix(LocalLeaders, "Food_security:fertilizers",
                    "Food_security:storing_food")
    df2 = df2.isin(["yes"])
    FS_CorralCropData = nt.concatDF(df1, df2)
    nt.mkCSV(FS_CorralCropData, "FS_CorralCropData.csv")

    df1 = nfv.dfFix(FarmyardCrop, "Item", "Property")
    df1 = df1.isin(["crop_area"])
    df2 = nfv.dfFix(FarmyardCrop, "Record_your_current_location:Latitude",
                    "Record_your_current_location:Accuracy")
    df3 = nfv.dfFix(FarmyardCrop, "Property", "Drainage")
    df4 = nfv.dfFix(FarmyardCrop, "Drainage",
                    "Irrigation")  #No se ajusta dato a Requisitos
    df4 = df4.isin(["yes"])
    FS_CorralUbication = nt.concatDF(df2, nt.concatDF(df3, df4))
    FS_CorralUbication = nt.get_valueBySector(df1, FS_CorralUbication)
    nt.mkCSV(FS_CorralUbication, "FS_CorralUbication.csv")

    df1 = nfv.dfFix(FarmyardCrop, "Item", "Property")
    df1 = df1.isin(["farmyard"])
    df2 = nfv.dfFix(FarmyardCrop, "Record_your_current_location:Latitude",
                    "Record_your_current_location:Accuracy")
    df3 = nfv.dfFix(FarmyardCrop, "Property", "Drainage")
    df4 = nfv.dfFix(FarmyardCrop, "Irrigation",
                    "Irrigation_details:Water_pump")
    df4 = df4.isin(["yes"])  #No se ajusta dato a Requisitos
    FS_CropUbication = nt.concatDF(df2, nt.concatDF(df3, df4))
    FS_CropUbication = nt.get_valueBySector(df1, FS_CropUbication)
    nt.mkCSV(FS_CropUbication, "FS_CropUbication.csv")
예제 #5
0
def mobility(MobilityINF, GeneralForm):
    #INF_MobilityInfrasctucture = nfv.dfFix(Entities,"","") #no se encuentra el dato en origen COMPROBADO 17/04/2020

    INF_MobilityPoint = nfv.dfFix(MobilityINF,
                                  "Record_your_current_location:Latitude",
                                  "Record_your_current_location:Accuracy")
    nt.mkCSV(INF_MobilityPoint, "INF_MobilityPoint.csv")

    INF_MobilityWay = [
        'walking', 'motorcycle', 'bike', 'truck_lorry_va', 'animals', 'car'
    ]
    INF_MobilityWay = pd.DataFrame(INF_MobilityWay)
    nt.mkCSV(INF_MobilityWay, "INF_MobilityWay.csv")

    internal = nfv.dfFix(GeneralForm, "Transport:Kind_transport_inside",
                         "Transport:Kind_transport_outside")
    internal = nt.separateValues(internal)
    internal = nt.set_sector(internal, "internal")
    external = nfv.dfFix(GeneralForm, "Transport:Kind_transport_outside",
                         "meta:instanceID")
    external = nt.separateValues(external)
    external = nt.set_sector(external, "external")
    INF_MobilityWay_has_Community = nt.concatDF(internal.T, external.T).T
    nt.mkCSV(INF_MobilityWay_has_Community,
             "INF_MobilityWay_has_Community.csv")
예제 #6
0
def government(Bibliography):
    #G_PublicPolitic no forma parte ETL
    dfPublic = nfv.dfFix(Bibliography,"Public institutions","Private institutions")
    dfPrivate = nfv.dfFix(Bibliography,"Private institutions","Non-profit organizations/NGOs")
    dfNonProfit = nfv.dfFix(Bibliography,"Non-profit organizations/NGOs","International cooperation agencies")
    dfInternational = nfv.dfFix(Bibliography,"International cooperation agencies","Local representatives/local committees/ local liders")
    dfLocal = nfv.dfFix(Bibliography,"Local representatives/local committees/ local liders")
    politicalActor = nt.politicalActor(dfPublic,dfPrivate,dfNonProfit,dfInternational,dfLocal)
    nt.mkCSV(politicalActor,"g_politicalActor.csv")
예제 #7
0
def camp(Bibliography, Entities):
    df1 = nfv.dfFix(Bibliography,
                    "Implementation date of the refugee camp (year)",
                    "Migration reasons")
    df2 = nfv.dfFix(Entities, "GENERAL_INFORMATION:Secondary_movement",
                    "GENERAL_INFORMATION:Relationship")
    df2 = df2['GENERAL_INFORMATION:Secondary_movement'].mean()
    array = np.array([df2])
    camp = nt.concatDF(df1, pd.DataFrame(array))
    nt.mkCSV(camp, "camp.csv")
예제 #8
0
def sanitation(Entities, SanitationInf):
    df1 = nfv.dfFix(Entities, "Sanitation:Open_defecation",
                    "Sanitation:Type_of_Latrine")
    df1 = df1.isin(["yes"])
    df2 = nfv.dfFix(Entities, "Sanitation:Type_of_Latrine",
                    "Sanitation:Individual_Latrines")
    INF_SanitationAccess = nt.concatDF(df1, df2)
    nt.mkCSV(INF_SanitationAccess, "INF_SanitationAccess.csv")

    inf_sanitationsystemquality = nfv.dfFix(SanitationInf, "Slab",
                                            "meta:instanceID")
    inf_sanitationsystemquality = inf_sanitationsystemquality.isin(["yes"])
    nt.mkCSV(inf_sanitationsystemquality, "inf_sanitationsystemquality.csv")
예제 #9
0
def source(GeneralCitizen,LocalLeaders):
    FS_FoodSource = ["Humanitarian Aid","Crops","Market"]
    FS_FoodSource = pd.DataFrame(FS_FoodSource)
    nt.mkCSV(FS_FoodSource,"FS_FoodSource.csv")
    
    df1 = nfv.dfFix(GeneralCitizen,"Main_food_source:Humanitarian_Aid","meta:instanceID")
    source = pd.DataFrame(["Humanitarian Aid","Crops","Market"])
    FS_FoodSource_has_Community = nt.get_number(df1,source)
    nt.mkCSV(FS_FoodSource_has_Community,"FS_FoodSource_has_Community.csv")
    
    FS_CultivationSeason = nfv.dfFix(LocalLeaders,"Food_security:cultivation_months","Food_security:own_food_months")
    FS_CultivationSeason = nt.vectorizeValue(FS_CultivationSeason)
    nt.mkCSV(FS_CultivationSeason,"FS_CultivationSeason.csv")
예제 #10
0
def shelter(Entities, Shelter, HouseHold):
    SH_Shelter = nfv.dfFix(Entities, "Shelter:Total_shelter",
                           "Shelter:Vulnerable_Area:Vunerable_Area")
    nt.mkCSV(SH_Shelter, "SH_Shelter.csv")

    df1 = nfv.dfFix(Shelter, "Location:Latitude", "Location:Accuracy")
    df2 = nfv.dfFix(Shelter, "Construc_tion_Details:Appropiate_Roof",
                    "Construc_tion_Details:Picture_Outside")
    df2 = df2.isin(["yes"])
    SH_Building = nt.concatDF(df1, df2)
    nt.mkCSV(SH_Building, "SH_Building.csv")

    SH_House = nfv.dfFix(HouseHold, "Shelter:No_Rooms",
                         "Energy:Access_Y_N_001")
    nt.mkCSV(SH_House, "SH_House.csv")
예제 #11
0
def get_tablePK(table, cursor):
    cursor.execute("SELECT * FROM " + table)
    df1 = uniFormatTable(pd.DataFrame(cursor.fetchall()))
    df2 = pd.read_csv(nfv.getPath(finalpath, table + ".csv"),
                      float_precision="high")
    df2 = uniFormatDF(df2)
    df1 = np.array(df1)
    pk = np.array([])
    for index, row in df2.iterrows():
        if (serviceTable(table) == False):
            for row2 in df1:
                if ((np.equal(np.array(row), np.array(row2[1:]))).all()):
                    pk = np.append(pk, row2[0])
        else:
            if (isEducationalCenter(table)):
                for row2 in df1:
                    if ((np.equal(np.array(row[:-2]), row2[1:-3])).all()):
                        pk = np.append(pk, row2[0])
            else:
                if (isOtherCenter(table) == False):
                    for row2 in df1:
                        if ((np.equal(np.array(row[:-1]), row2[1:-2])).all()):
                            pk = np.append(pk, row2[0])
                else:
                    for row2 in df1:
                        if ((np.equal(np.array(row[:-1]), row2[1:-1])).all()):
                            pk = np.append(pk, row2[0])
    return pd.DataFrame(pk)
예제 #12
0
def wasteManagement(Entities, WasteManagementInf):
    INF_WasteManagementgInfrastructure = nfv.dfFix(
        Entities, "Waste_Managment:Waste_Collection",
        "Waste_Managment:Landfill_Details:Location_1")
    nt.mkCSV(INF_WasteManagementgInfrastructure,
             "INF_WasteManagementgInfrastructure.csv")

    INF_landFill = nfv.dfFix(Entities,
                             "Waste_Managment:Landfill_Details:Location_1",
                             "Water:Quality")
    nt.mkCSV(INF_landFill, "INF_landFill.csv")

    INF_CollectionPoints = nfv.dfFix(WasteManagementInf,
                                     "Record_your_current_location:Latitude",
                                     "Record_your_current_location:Accuracy")
    nt.mkCSV(INF_CollectionPoints, "INF_CollectionPoints.csv")
예제 #13
0
def continuity(LocalLeaders, ComunalServices):
    FS_FoodAccessContinuity = nfv.dfFix(LocalLeaders,
                                        "Food_security:perishable_food",
                                        "Costs:basic_basket")
    nt.mkCSV(FS_FoodAccessContinuity, "FS_FoodAccessContinuity.csv")

    FS_SelfSufficiencySeason = nfv.dfFix(LocalLeaders,
                                         "Food_security:own_food_months",
                                         "Food_security:kind_food")
    FS_SelfSufficiencySeason = nt.vectorizeValue(FS_SelfSufficiencySeason)
    nt.mkCSV(FS_SelfSufficiencySeason, "FS_SelfSufficiencySeason.csv")

    FS_OwnCultivationFoodType = nfv.dfFix(LocalLeaders,
                                          "Food_security:kind_food",
                                          "Food_security:fertilizers")
    FS_OwnCultivationFoodType = nt.separateValues(FS_OwnCultivationFoodType)
    nt.mkCSV(FS_OwnCultivationFoodType, "FS_OwnCultivationFoodType.csv")

    FS_GrainConservation = nfv.dfFix(LocalLeaders, "Food_security:dry_food",
                                     "Food_security:perishable_food")
    FS_GrainConservation = nt.separateValues(FS_GrainConservation)
    nt.mkCSV(FS_GrainConservation, "FS_GrainConservation.csv")

    df1 = nfv.dfFix(ComunalServices, "General_Information:Type_of_service",
                    "General_Information:Other_service")
    df1 = df1.isin(["gran_mill"])
    df2 = nfv.dfFix(ComunalServices, "Grain_Mill_Details:Available",
                    "Grain_Mill_Details:Type")
    df3 = nfv.dfFix(ComunalServices, "Grain_Mill_Details:Engine",
                    "Cementary_Details:Drainage")
    FS_GrainMill = nt.concatDF(df2, df3)
    FS_GrainMill = nt.get_valueBySector(df1, FS_GrainMill)
    nt.mkCSV(FS_GrainMill, "FS_GrainMill.csv")
예제 #14
0
def serv(HouseHold, Entities):
    #S_HealthCenterService #información de plano

    S_MedicineAccess = nfv.dfFix(HouseHold, "health_001:Healthcare",
                                 "Economy:FamilyHead")
    S_MedicineAccess = S_MedicineAccess.isin(["yes"])
    nt.mkCSV(S_MedicineAccess, "S_MedicineAccess.csv")

    S_DataAccess = nfv.dfFix(Entities, "Data_Access", "Antenna")
    S_DataAccess = nt.separateValues(S_DataAccess)
    nt.mkCSV(S_DataAccess, "S_DataAccess.csv")

    S_RepeaterAntena = nfv.dfFix(Entities, "Antenna", "meta:instanceID")
    nt.mkCSV(S_RepeaterAntena, "S_RepeaterAntena.csv")

    S_NoEducationCause = nfv.dfFix(Entities, "Education_Issues", "Data_Access")
    S_NoEducationCause = nt.separateValues(S_NoEducationCause)
    nt.mkCSV(S_NoEducationCause, "S_NoEducationCause.csv")
예제 #15
0
def makeNMtable(elem, cursor):
    x = nm.getTableName(elem)
    if (nm.is_non_zero_file(nfv.getPath(finalpath, x + ".csv"))):
        if (nm.specialTable(elem) == False):
            tablePK = nm.get_tablePK(x, cursor)
            communityPK = nm.get_communityPK(elem, cursor)
            arrayCommunity = np.array([])
            for index, row in tablePK.iterrows():
                arrayCommunity = np.append(arrayCommunity, communityPK[0][0])
            nmTableFK = nt.concatDF(tablePK, pd.DataFrame(arrayCommunity))
            if (os.path.isfile(finalpath + "/" + elem + ".csv")):
                if (nm.is_non_zero_file(nfv.getPath(finalpath,
                                                    elem + ".csv"))):
                    df = np.array(pd.read_csv(finalpath + "/" + elem + ".csv"))
                    df = pd.DataFrame(df)
                    nmTableFK = nt.concatDF(nmTableFK, df)
        else:
            nmTableFK = nm.get_specialTable(x, elem, cursor)
        nt.mkCSV(nmTableFK, elem + ".csv")
예제 #16
0
def food(Bibliography, GeneralCitizen):
    FS_Cause = nfv.dfFix(Bibliography, "Cause 1",
                         "Affected groups due to food insecurity")
    FS_Cause = FS_Cause.transpose()
    FS_Cause = FS_Cause.dropna(axis=1)
    nt.mkCSV(FS_Cause,
             "FS_Cause.csv")  #Incompleto falta separar por comunidadades

    df1 = nfv.dfFix(Bibliography, "Children", "Calories of the typical dish")
    df1 = df1.isin(["yes"])
    df2 = nfv.dfFix(Bibliography, "Intake (g) - default value 70g-",
                    "GENERAL INFORMATION OF REFUGEES SETTLEMENT")
    FS_FoodSafety = nt.concatDF(df1, df2)
    nt.mkCSV(FS_FoodSafety,
             "FS_FoodSafety.csv")  #Incompleto falta separar por comunidadades

    FS_FoodAccess = ["meat", "grain", "vegetable", "fruit"]
    FS_FoodAccess = pd.DataFrame(FS_FoodAccess)
    nt.mkCSV(FS_FoodAccess, "FS_FoodAccess.csv")

    FS_FoodAccess_has_Community = nfv.dfFix(GeneralCitizen, "Type_Food:Meat",
                                            "times:One_time")
    FS_FoodAccess_has_Community = FS_FoodAccess_has_Community.transpose()
    nt.mkCSV(FS_FoodAccess_has_Community, "FS_FoodAccess_has_Community.csv")

    FS_TimesPerDay = ["one", "two", "three", "Greater than three"]
    FS_TimesPerDay = pd.DataFrame(FS_TimesPerDay)
    nt.mkCSV(FS_TimesPerDay, "FS_TimesPerDay.csv")

    df1 = nfv.dfFix(GeneralCitizen, "times:One_time", "main_food:Breakfast")
    times = pd.DataFrame([["one", "two", "three", "Greater than three"]])
    FS_TimesPerDay_has_Community = nt.get_number(df1, times)
    nt.mkCSV(FS_TimesPerDay_has_Community, "FS_TimesPerDay_has_Community.csv")

    FS_ImportantMeal = ["Breakfast", "lunch", "coffe time", "dinner"]
    FS_ImportantMeal = pd.DataFrame(FS_ImportantMeal)
    nt.mkCSV(FS_ImportantMeal, "FS_ImportantMeal.csv")

    df1 = nfv.dfFix(GeneralCitizen, "main_food:Breakfast", "typical_dish:Pork")
    meal = pd.DataFrame(["Breakfast", "lunch", "coffe time", "dinner"])
    FS_ImportantMeal_has_Community = nt.get_number(df1, meal)
    nt.mkCSV(FS_ImportantMeal_has_Community,
             "FS_ImportantMeal_has_Community.csv")

    FS_TypicalPlate = [
        "pork", "beef", "chicken", "lamp", "cereals", "legumes", "fruits"
    ]
    FS_TypicalPlate = pd.DataFrame(FS_TypicalPlate)
    nt.mkCSV(FS_TypicalPlate, "FS_TypicalPlate.csv")

    df1 = nfv.dfFix(Bibliography, "Pork (200 kcal/100g)",
                    "Intake (g) - default value 70g-")
    plate = pd.DataFrame(
        ["pork", "beef", "chicken", "lamp", "cereals", "legumes", "fruits"])
    FS_TypicalPlate_has_Community = nt.get_number(df1, plate)
    nt.mkCSV(FS_TypicalPlate_has_Community,
             "FS_TypicalPlate_has_Community.csv")
예제 #17
0
def get_valueBySector(df1, df2):
    df2 = df2.reset_index()
    array1 = np.array(df1)
    i = 0
    for row in array1:
        for elem in row:
            if (elem == False):
                df2 = nfv.dropRow(df2, i)
        i += 1
    df2 = df2.set_index('index')
    return df2
예제 #18
0
def seGenderData(GeneralCitizen):
    #SE_GenderData = nfv.dfFix(Entities,"","")
    #nt.mkCSV(SE_GenderData,"SE_GenderData.csv") No existe dicho dato en los formularios

    SE_WorkType = ["Firewood Collection", "Cooking"]
    SE_WorkType = pd.DataFrame(SE_WorkType)
    nt.mkCSV(SE_WorkType, "SE_WorkType.csv")

    df1 = nfv.dfFix(GeneralCitizen, "Firewood_collection:Childs",
                    "Cooking:Childs_001")
    df2 = nfv.dfFix(GeneralCitizen, "Cooking:Childs_001",
                    "TICs_Knowledge:Phone_Call")
    df1 = df1.transpose()
    df2 = df2.transpose()
    df1 = df1.reset_index(drop=True)
    df2 = df2.reset_index(drop=True)
    SE_WorkType_has_Community = nt.concatDF(df1, df2).T
    SE_WorkType = ["Firewood Collection", "Cooking"]
    SE_WorkType_has_Community = nt.concatDF(SE_WorkType_has_Community,
                                            pd.DataFrame(SE_WorkType))
    nt.mkCSV(SE_WorkType_has_Community, "SE_WorkType_has_Community.csv")
예제 #19
0
def sePersonalSafty(WomenGroup,LocalLeaders,SanitationInfra,Entities):
    SE_SafetyPlace = nfv.dfFix(WomenGroup,"Feel_Safe:Street_morning","Feel_Safe:Firewood_collection_001")
    SE_SafetyPlace = nt.getSubColumnNames(SE_SafetyPlace,10)
    nt.mkCSV(SE_SafetyPlace,"SE_SafetyPlace.csv") 
    
    SE_SafetyPlace_has_Community = nfv.dfFix(WomenGroup,"Feel_Safe:Street_morning","Feel_Safe:Firewood_collection_001")
    SE_SafetyPlace = pd.DataFrame()
    SE_SafetyPlace = nt.getSubColumnNames(SE_SafetyPlace_has_Community,10)
    array1 = np.array([])
    for row in np.array(SE_SafetyPlace_has_Community):
        for row2 in np.array(SE_SafetyPlace):
            for elem2 in row2:
                array1 = np.append(array1,elem2)
    SE_SafetyPlace_has_Community = pd.DataFrame(np.array(SE_SafetyPlace_has_Community))
    SE_SafetyPlace_has_Community = nt.concatDF(SE_SafetyPlace_has_Community.T,pd.DataFrame(array1))
    nt.mkCSV(SE_SafetyPlace_has_Community,"SE_SafetyPlace_has_Community.csv") 
    
    SE_ConflictArea = nfv.dfFix(WomenGroup,"Trouble_Spots","Cooking_Details:INSTRUCTION_001")
    SE_ConflictArea = SE_ConflictArea.dropna()
    SE_ConflictArea = nt.separateValues(SE_ConflictArea)
    nt.mkCSV(SE_ConflictArea,"SE_ConflictArea.csv") #IMPORRANTE Los datos entran como string de lugares, pero se quiere guardar coordenadas.
    
    df1 = nfv.dfFix(LocalLeaders,"Settlement_security:secur_committees","Food_security:cultivation_months")
    df1 = df1.isin(["yes"])
    df2 = nfv.dfFix(Entities,"Women_Patrol","Education_Issues")
    df2 = df2.isin(["Yes"])
    SE_SafetyCommittee = nt.concatDF(df1,df2)
    nt.mkCSV(SE_SafetyCommittee,"SE_SafetyCommittee.csv") 
    
    SE_SafetyLatrines = nfv.dfFix(SanitationInfra, "Public_Latrines:Sex_segregated","Slab")
    SE_SafetyLatrines = SE_SafetyLatrines.isin(["yes"])
    nt.mkCSV(SE_SafetyLatrines,"SE_SafetyLatrines.csv") 
    
예제 #20
0
def NMsqlBody(communityType, tablesList, f, cursor, query):
    otherTable = np.array([])
    for row in tablesList:
        for elem in row:
            if ((communityType == 0 and elem.find("_has_camp") == -1)
                    or (communityType == 1)):
                if (nmw.NMTable(elem)):
                    x = nmt.getTableName(elem)
                    if (nmt.is_non_zero_file(nfv.getPath(
                            finalpath, x + ".csv"))):
                        if (nmw.specialTable(elem) == False):
                            f.write(query.getQuery1() + elem + ".csv'\n" +
                                    query.getQuery2() + " " + elem + "\n" +
                                    query.getQuery3() + "\n" +
                                    query.getQuery4() + "\n")
                            cursor.execute("SHOW columns FROM " + elem)
                            columnList = cursor.fetchall()
                            string = np.array([], dtype=str)
                            for column in columnList:
                                if (nmw.validColumn(column)):
                                    string = np.append(string, column[0])
                            f.write("    (")
                            for column in string:
                                if (column != string[-1]):
                                    f.write("@" + column + ",")
                                else:
                                    f.write("@" + column + ")\n")
                            f.write("SET ")
                            for column in string:
                                if (column != string[-1]):
                                    if (column == string[0]):
                                        f.write(column + " = NULLIF(@" +
                                                column + ",''),\n")
                                    else:
                                        f.write("    " + column +
                                                " = NULLIF(@" + column +
                                                ",''),\n")
                                else:
                                    if (column == string[0]):
                                        f.write(column + " = NULLIF(@" +
                                                column + ",'');\n\n")
                                    else:
                                        f.write("    " + column +
                                                " = NULLIF(@" + column +
                                                ",'');\n\n")
                        else:
                            otherTable = np.append(otherTable, elem)

    for elem in otherTable:
        if (elem == "inf_expandplanbeneficiaries_has_inf_energyinfrastructure"
            ):
            nmw.writteExpanPlan(query, f, cursor, communityType)
예제 #21
0
def knoweledge(GeneralCitizen):
    S_Tecknowlege = ["Phone Call", "Internet", "PC", "Programming"]
    S_Tecknowlege = pd.DataFrame(S_Tecknowlege)
    nt.mkCSV(S_Tecknowlege, "S_Tecknowlege.csv")

    S_Tecknowlege_has_Community = nfv.dfFix(GeneralCitizen,
                                            "TICs_Knowledge:Phone_Call",
                                            "App_USED")
    S_Tecknowlege_has_Community = S_Tecknowlege_has_Community.transpose()
    nt.mkCSV(S_Tecknowlege_has_Community, "S_Tecknowlege_has_Community.csv")

    S_App = [
        "whatsapp", "facebook", "skype", "instagram", "google", "youtube",
        "email", "word", "excel", "otra"
    ]
    S_App = pd.DataFrame(S_App)
    nt.mkCSV(S_App, "S_App.csv")

    df1 = nfv.dfFix(GeneralCitizen, "App_USED", "App_needed")
    df1 = nt.set_sector(df1, "Used")
    df2 = nfv.dfFix(GeneralCitizen, "App_needed", "Type_Food:Meat")
    df2 = nt.set_sector(df2, "Necesity")
    S_App_has_Community = nt.concatDF(df1.T, df2.T).T
    nt.mkCSV(S_App_has_Community, "S_App_has_Community.csv")
예제 #22
0
def get_specialTableFKs(table, tableHas, x, y, cursor):
    cursor.execute("SELECT * FROM " + table)
    df1 = uniFormatTable(pd.DataFrame(cursor.fetchall()))
    df2 = pd.read_csv(nfv.getPath(finalpath, tableHas + ".csv"),
                      header=None,
                      float_precision="high")
    df2 = uniFormatDF(df2)
    df1 = np.array(df1)
    pk = np.array([])
    arrayCommunity = np.array([])
    communityPK = get_communityPK(tableHas, cursor)
    for index, row in df2.iterrows():
        for row2 in df1:
            if (row[x] == row2[1]):
                pk = np.append(pk, row2[0])
    pk = pd.DataFrame(pk)
    for index, row in pk.iterrows():
        arrayCommunity = np.append(arrayCommunity, communityPK[0][0])
    arrayCommunity = pd.DataFrame(arrayCommunity)
    result = nt.concatDF(pk, nt.concatDF(arrayCommunity, df2))
    result = result.drop(result.columns[[y]], axis=1)
    return result
예제 #23
0
def infWater(Entities, HouseHold, WaterInf):
    df1 = nfv.dfFix(Entities, "Water:Quality", "Water:Treatment")
    df2 = nfv.dfFix(Entities, "Water:Comsuption", "Water:Time")
    INF_WaterInfrastructure = nt.concatDF(df1, df2)
    nt.mkCSV(INF_WaterInfrastructure, "INF_WaterInfrastructure.csv")

    INF_TimeSpent = nfv.dfFix(HouseHold, "Water:Water_col",
                              "health_001:Healthcare")
    nt.mkCSV(INF_TimeSpent, "INF_TimeSpent.csv")

    INF_Purificationsystem = nfv.dfFix(Entities, "Water:Treatment",
                                       "Water:Comsuption")
    INF_Purificationsystem = nt.separateValues(INF_Purificationsystem)
    nt.mkCSV(INF_Purificationsystem, "INF_Purificationsystem.csv")

    df1 = nfv.dfFix(WaterInf, "Record_your_current_location:Latitude",
                    "Record_your_current_location:Accuracy")
    df2 = nfv.dfFix(WaterInf, "Availability", "meta:instanceID")
    df2 = df2.isin(["yes"])
    INF_WaterPoint = nt.concatDF(df1, df2)
    nt.mkCSV(INF_WaterPoint, "INF_WaterPoint.csv")
예제 #24
0
def energy(GeneralForm, Entities, Business, HouseHold, ComunalServices,
           WomenGroup, EnergyINF):
    df1 = nfv.dfFix(GeneralForm, "Energy:electrical_grid",
                    "Energy:power_point")
    df1 = df1.isin(["yes"])
    df2 = nfv.dfFix(Entities, "ENERGY:Electricity_network",
                    "ENERGY:Covered_services")
    df2 = df2.isin(["yes"])
    flag = False
    for row in np.array(df2):
        for elem in row:
            if (flag == False and elem == True):
                flag = True
    df2 = pd.DataFrame(np.array([flag]))
    df3 = nfv.dfFix(Entities, "ENERGY:Power_failure", "ENERGY:Street_Light")
    x = np.array([])
    x = np.append(x, df3['ENERGY:Power_failure'].dropna().mean())
    flag = False
    for row in np.array(df2):
        for elem in row:
            if (flag == False and elem == 'available'):
                flag = True
    if (flag):
        y = pd.DataFrame(np.array(["available"]))
    else:
        y = pd.DataFrame(np.array(["not_available"]))
    df3 = nt.concatDF(pd.DataFrame(x), y)
    df4 = nfv.dfFix(Entities, "ENERGY:Street_Light",
                    "Urban_Planning_001:Urban_Planning")
    df4 = df4.isin(["yes"])
    flag = False
    for row in np.array(df4):
        for elem in row:
            if (flag == False and elem == True):
                flag = True
    df4 = pd.DataFrame(np.array([flag]))
    df5 = nfv.dfFix(GeneralForm, "Energy:Distance_ST",
                    "Transport:Kind_transport_inside")
    INF_EnergyInfrastructure = nt.concatDF(
        df1, (nt.concatDF(df2, nt.concatDF(df3, nt.concatDF(df4, df5)))))
    nt.mkCSV(INF_EnergyInfrastructure, "INF_EnergyInfrastructure.csv")

    inf_expandplanbeneficiaries = nfv.dfFix(Entities,
                                            "ENERGY:Covered_services",
                                            "ENERGY:Power_failure")
    inf_expandplanbeneficiaries = nt.separateValues(
        inf_expandplanbeneficiaries)
    nt.mkCSV(inf_expandplanbeneficiaries, "inf_expandplanbeneficiaries.csv")

    INF_GenerationSource = [
        'electrical_gri', 'diesel_genset', 'solar_energy', 'other'
    ]
    INF_GenerationSource = pd.DataFrame(INF_GenerationSource)
    nt.mkCSV(INF_GenerationSource, "INF_GenerationSource.csv")

    df1 = nfv.dfFix(Business, "Energy:access_by",
                    "Energy:electrical_appliances")
    df2 = nfv.dfFix(Business, "Energy:money_electricity",
                    "Energy:cost_solar_panel")
    comercial = nt.concatDF(df1, df2)
    comercial = nt.set_sector(comercial, "comercial")
    df1 = nfv.dfFix(HouseHold, "Energy:Access_electric", "Energy:Appliances")
    df2 = nfv.dfFix(HouseHold, "Energy:Elec_expen", "Energy:Solar_cost")
    residencial = nt.concatDF(df1, df2)
    residencial = nt.set_sector(residencial, "residencial")
    residencial = nt.replacestr(residencial, "electrical_gri_1",
                                "electrical_gri")  #REVISAR OTRAS OPCIONES
    comunitario = nfv.dfFix(ComunalServices, "Energy_Details:Energy_Source",
                            "Energy_Details:Type_of_water_supply")
    comunitario = nt.set_sector(comunitario, "comunitario")
    comunitario = nt.replacestr(comunitario, "thermal_genera", "diesel_genset")
    INF_GenerationSource_has_Community = nt.concatDF(
        comercial.T, nt.concatDF(residencial.T, comunitario.T)).T
    nt.mkCSV(INF_GenerationSource_has_Community,
             "INF_GenerationSource_has_Community.csv")

    df1 = nfv.dfFix(EnergyINF, "Ofert:Type_of_water_supply", "Ofert:Picture")
    df2 = nfv.dfFix(EnergyINF, "Ofert:Power_of_generation",
                    "Ofert:Power_of_generation_001")
    INF_GenerationSystem = nt.concatDF(df1, df2)
    nt.mkCSV(INF_GenerationSystem, "INF_GenerationSystem.csv")

    INF_Appliance = np.array([
        "lantern", "light_bulbs", "mobile_phone", "radio_music_pl", "tv_dvd",
        "laptop_tablet_", "fridge", "electrical_sto", "others"
    ])
    INF_Appliance = pd.DataFrame(INF_Appliance)
    nt.mkCSV(INF_Appliance, "INF_Appliance.csv")

    comercial = nfv.dfFix(Business, "Energy:electrical_appliances",
                          "Energy:money_electricity")
    comercial = nt.dropNaAndResetIndex(comercial)
    comercial = nt.get_applianceDF(comercial)
    comercial = nt.set_sector(comercial, "comercial")
    residencial = nfv.dfFix(HouseHold, "Energy:Appliances",
                            "Energy:Elec_expen")
    residencial = nt.dropNaAndResetIndex(residencial)
    residencial = nt.get_applianceDF(residencial)
    residencial = nt.set_sector(residencial, "residencial")
    comunitario = nfv.dfFix(ComunalServices,
                            "Energy_Details:Electrical_Appliances:Devices",
                            "Construction_Details:Appropiate_Roof")
    comunitario = nt.dropNaAndResetIndex(comunitario)
    comunitario = nt.get_applianceDF(comunitario)
    comunitario = nt.set_sector(comunitario, "comunitario")
    INF_Appliance_has_Community = nt.concatDF(
        comercial.T, nt.concatDF(residencial.T, comunitario.T)).T
    INF_Appliance_has_Community = INF_Appliance_has_Community[
        INF_Appliance_has_Community[1].notna()]
    nt.mkCSV(INF_Appliance_has_Community, "INF_Appliance_has_Community.csv")

    df1 = nfv.dfFix(GeneralForm, "Energy:Stove", "Energy:Firewood_weight")
    df2 = nfv.dfFix(GeneralForm, "Energy:fuel_cooking",
                    "Energy:technology_street_lighting")
    df3 = nfv.dfFix(GeneralForm, "Energy:Firewood_weight",
                    "Energy:fuel_cooking")
    INF_Kitchen = nt.concatDF(df1, nt.concatDF(df2, df3))
    nt.mkCSV(INF_Kitchen, "INF_Kitchen.csv")

    INF_CookWoman = nfv.dfFix(WomenGroup, "Cooking_Details:Cooking_Inside",
                              "Street_light")
    nt.mkCSV(INF_CookWoman, "INF_CookWoman.csv")

    df1 = nfv.dfFix(Entities, "ENERGY:Street_Light",
                    "Urban_Planning_001:Urban_Planning")
    df1 = df1.isin(["yes"])
    df2 = nfv.dfFix(GeneralForm, "Energy:Distance_ST",
                    "Transport:Kind_transport_inside")
    df3 = nfv.dfFix(WomenGroup, "Feel_Safe:Street_Night",
                    "Feel_Safe:Bath_Area")
    INF_PublicLighting = nt.concatDF(df1, (nt.concatDF(df2, df3)))
    nt.mkCSV(INF_PublicLighting, "INF_PublicLighting.csv")

    INF_LightingTech = nfv.dfFix(GeneralForm,
                                 "Energy:technology_street_lighting",
                                 "Energy:Distance_ST")
    nt.mkCSV(INF_LightingTech, "INF_LightingTech.csv")

    df1 = nfv.dfFix(EnergyINF, "Item", "Sector")
    df1 = df1.isin(["street light"])
    INF_StreetLamp = nfv.dfFix(EnergyINF,
                               "Record_your_current_location:Latitude",
                               "Record_your_current_location:Accuracy")
    INF_StreetLamp = nt.get_valueBySector(df1, INF_StreetLamp)
    nt.mkCSV(INF_StreetLamp, "INF_StreetLamp.csv")
예제 #25
0
 def __init__(self, communityType):
     Bibliography = pd.read_excel(
         nfv.getPath(nfv.mainpath, "Bibliography_120220.xlsx"))
     Bibliography = nfv.fixBibliography(Bibliography)
     self.Bibliography = nfv.setDataByIndex(Bibliography, communityType)
     self.Entities = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Entities_Interview_results.csv"),
                     float_precision="high"), communityType)
     self.LocalLeaders = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Local_leaders_v3_results.csv"),
                     float_precision="high"), communityType)
     self.HouseHold = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Survey_household_v6_results.csv"),
                     float_precision="high"), communityType)
     self.WomenGroup = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Women_Focus_Group2_results.csv"),
                     float_precision="high"), communityType)
     self.SanitationInfra = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_V1_0_Sanitation_Infrastructre_results.csv"),
                     float_precision="high"), communityType)
     self.Priorities = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Priorities_v3_results.csv"),
                     float_precision="high"), communityType)
     self.GeneralForm = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_General_form_v3_results.csv"),
                     float_precision="high"), communityType)
     self.PublicSpace = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Public_Space_results.csv"),
                     float_precision="high"), communityType)
     self.WaterInf = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Water_Infrastructure_results.csv"),
                     float_precision="high"), communityType)
     self.SanitationInf = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_V1_0_Sanitation_Infrastructre_results.csv"),
                     float_precision="high"), communityType)
     self.WasteManagementInf = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_1_0_Waste_Management_Infrastructure_results.csv"),
                     float_precision="high"), communityType)
     self.EnergyINF = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Energy_Infrastructure_results.csv"),
                     float_precision="high"), communityType)
     self.Business = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA1_0_Business_surveys_v3_results.csv"),
                     float_precision="high"), communityType)
     self.MobilityINF = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_1_0__Transport_servicesaccess_points_results.csv"),
                     float_precision="high"), communityType)
     self.ComunalServices = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Communal_Services_results.csv"),
                     float_precision="high"), communityType)
     self.GeneralCitizen = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_1_0_General_Citizen_Focus_Group_results.csv"),
                     float_precision="high"), communityType)
     self.Shelter = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Shelter_results.csv"),
                     float_precision="high"), communityType)
     self.FarmyardCrop = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Farmyard_and_Crops_results.csv"),
                     float_precision="high"), communityType)
예제 #26
0
def seEconomy(LocalLeaders,HouseHold,Priorities):
    SE_Economy = nfv.dfFix(LocalLeaders, "Costs:cost_basic_basket","Costs:cost_firewood")
    nt.mkCSV(SE_Economy,"SE_Economy.csv") 
    
    SE_Incometype = nfv.dfFix(HouseHold, "Economy:Main_inco","Economy:Money")
    nt.mkCSV(SE_Incometype,"SE_Incometype.csv") 
    
    df1 = nfv.dfFix(HouseHold, "General:Gender","General:Settlement")
    df2 = nfv.dfFix(HouseHold, "Economy:Money","Economy:Food")
    SE_IncomeTtype_has_Community = nt.concatDF(df1,df2)
    nt.mkCSV(SE_IncomeTtype_has_Community,"SE_IncomeTtype_has_Community.csv")
    
    SE_ExpenseType = ['food','clothes','water','education','transport','health','energy']
    SE_ExpenseType = pd.DataFrame(SE_ExpenseType)
    nt.mkCSV(SE_ExpenseType,"SE_ExpenseType.csv")
    
    df1 = nfv.dfFix(HouseHold, "General:Gender","General:Settlement")
    df2 = nfv.dfFix(HouseHold, "Economy:Food","meta:instanceID")
    df3 = pd.DataFrame(['food','clothes','water','education','transport','health','energy'])
    SE_ExpenseType_has_Community = nt.get_claveValor(df1,df2,df3)
    nt.mkCSV(SE_ExpenseType_has_Community,"SE_ExpenseType_has_Community.csv")
    
    priority = ['energy','shelter','water access','sanitation','education','health','public space','food','TIC','work','waste management','public transport','religious center','socio cultural center','market']
    priority = pd.DataFrame(priority)
    nt.mkCSV(priority,"se_priority.csv")
    
    df1 = nfv.dfFix(Priorities,"group_yf0yl72:Energy_1","Priority_2:Instruction")
    df2 = nfv.dfFix(Priorities,"Priority_2:Energy_2","Priority_3:Instruction_001")
    df3 = nfv.dfFix(Priorities,"Priority_3:Energy_3","Priority_4:Instruction_002")
    df4 = nfv.dfFix(Priorities,"Priority_4:Energy_4_001","Priority_5:Instruction_003")
    df5 = nfv.dfFix(Priorities,"Priority_5:Energy_4","meta:instanceID")
    SE_Priority_has_Community = nt.concatDF(df1,(nt.concatDF(df2,nt.concatDF(df3,nt.concatDF(df4,df5)))))
    SE_Priority_has_Community = pd.DataFrame(SE_Priority_has_Community.sum())
    priority = np.array(['energy','shelter','water access','sanitation','education','health','public space','food','TIC','work','waste management','public transport','religious center','socio cultural center','market'])
    array1 = np.array([])
    array2 = np.array([])
    for i in range(5):
        for elem in priority:
            array1 = np.append(array1,elem)
            array2 = np.append(array2,i+1)
    SE_Priority_has_Community = nt.concatDF(SE_Priority_has_Community,nt.concatDF(pd.DataFrame(array1),pd.DataFrame(array2)))
    nt.mkCSV(SE_Priority_has_Community,"SE_Priority_has_Community.csv")
예제 #27
0
def urbanism(Entities,GeneralForm,PublicSpace):
    df1 = nfv.dfFix(Entities,"Urban_Planning_001:Urban_Planning","Urban_Planning_001:Growth_area")
    df2 = nfv.dfFix(GeneralForm,"Urban_information:Boundary_limits","Urban_information:Drain_system") 
    df3 = nfv.dfFix(Entities,"Urban_Planning_001:Land_Managment","Urban_Planning_001:Risk_Managment")
    df4 = nfv.dfFix(Entities,"Urban_Planning_001:Growth_area","Urban_Planning_001:Land_Managment")
    df5 = nfv.dfFix(Entities,"Urban_Planning_001:Risk_Managment","Shelter:Housing_Improvement")
    U_Urbanism = nt.concatDF(df1,nt.concatDF(df2,nt.concatDF(df3,nt.concatDF(df4,df5))))
    nt.mkCSV(U_Urbanism,"U_Urbanism.csv")
    
    u_area = nfv.dfFix(PublicSpace,"Details:Shade_Areas","meta:instanceID")
    u_area = nt.getSubColumnNames(u_area,8)
    u_area = pd.DataFrame(u_area)
    nt.mkCSV(u_area,"u_area.csv")
    
    df1 = nfv.dfFix(PublicSpace,"Details:Shade_Areas","meta:instanceID")
    df1 = df1.isin(["yes"])
    u_area = nt.getSubColumnNames(df1,8)
    df = pd.DataFrame()
    U_Area_has_Community = nfv.dfFix(PublicSpace,"Record_your_current_location:Latitude","Record_your_current_location:Accuracy")
    j = 0
    for row in np.array(df1):
        i = 0
        array = np.array([],dtype = int)
        array2 = np.array([])
        for elem in row:
            if(elem == True):
                array = np.append(array,i)
            i += 1
        for i in array:
            array2 = np.append(array2,np.array(u_area)[i])
        df = nt.concatDF(df,pd.DataFrame(array2))
        j += 1
    U_Area_has_Community = nt.concatDF(U_Area_has_Community,df.T)
    df = pd.DataFrame()
    for row in np.array(U_Area_has_Community):
        array = np.array([])
        for elem in row[3:]:
            if(str(elem) != 'nan'):
                array = np.append(array,elem)
        for elem in array:
            array2 = row[:3]
            array2 = np.append(array2,elem)
            df = nt.concatDF(df,pd.DataFrame(array2))
    U_Area_has_Community = df.T
    nt.mkCSV(U_Area_has_Community,"U_Area_has_Community.csv")
    
    #U_LandUse Datos GIS, no parte de esta ETL. 2 no se encuentran datos.
    
    U_Road = nfv.dfFix(GeneralForm,"Urban_information:Drain_system","Energy:electrical_grid") 
    nt.mkCSV(U_Road,"U_Road.csv") #Falta la información que sale de Plano
    
    df1 = nfv.dfFix(PublicSpace,"Record_your_current_location:Latitude","Record_your_current_location:Accuracy") 
    df2 = nfv.dfFix(PublicSpace,"Details:Shade_Areas","meta:instanceID") 
    df2 = df2.isin(["yes"])
    U_RecreationalArea = nt.concatDF(df1,df2)
    nt.mkCSV(U_RecreationalArea,"U_RecreationalArea.csv")
    
    #U_PublicSpace dato , no corresponde a la ETL
예제 #28
0
def generalData(Bibliography):
    df1 = nfv.dfFix(Bibliography, "Mujeres menores de 5 años (%)",
                    "Total population")
    df2 = nfv.dfFix(Bibliography, "Growth rate of populatoin (%)", "Culture")
    GD_Demography = nt.concatDF(df1, df2)
    nt.mkCSV(GD_Demography, "GD_Demography.csv")

    GD_Ethnicgroup = nfv.dfFix(Bibliography, "Ethnich group 1", "Religion").T
    nt.mkCSV(GD_Ethnicgroup, "GD_Ethnicgroup.csv")

    df1 = nfv.dfFix(Bibliography, "Parliamentary republic",
                    "Territorial and Urbanistic")
    GD_Government = df1
    GD_Government = GD_Government.isin(["Si"])
    GD_Government = GD_Government.any(
    )  #Lista con indice de columna y True si un contiene un True o False en caso contrario
    GD_Government = list(
        GD_Government[GD_Government == True].index)  #lista de indices con true
    GD_Government = pd.DataFrame(GD_Government)
    nt.mkCSV(GD_Government, "GD_Government.csv")

    GD_Economy = nfv.dfFix(Bibliography, "Agriculture (%)", "Government")
    nt.mkCSV(GD_Economy, "GD_Economy.csv")

    df1 = nfv.dfFix(Bibliography, "Urban population (%)", "Population density")
    df2 = nfv.dfFix(Bibliography, "Urban (inhabitants/hectares)",
                    "Infrastructures")
    GD_Urbanism = nt.concatDF(df1, df2)
    nt.mkCSV(GD_Urbanism, "GD_Urbanism.csv")

    df1 = nfv.dfFix(Bibliography, "Rural agua (%)",
                    "Access to improved sanitation")
    df2 = nfv.dfFix(Bibliography, "Rural saneamiento(%)",
                    "Access to electricity")
    df3 = nfv.dfFix(Bibliography, "Rural electricidad (%)",
                    "Matrix of electricity generation")
    GD_Infrastructure = nt.concatDF(nt.concatDF(df1, df2), df3)
    nt.mkCSV(GD_Infrastructure, "GD_Infrastructure.csv")

    GD_ElectricGenerationMix = nfv.dfFix(Bibliography, "Hydropower (%)",
                                         "High voltage (kV)")
    nt.mkCSV(GD_ElectricGenerationMix, "GD_ElectricGenerationMix.csv")

    GD_ServiceAccess = nfv.dfFix(Bibliography, "Illiteracy rate (%)",
                                 "Shelter")
    nt.mkCSV(GD_ServiceAccess, "GD_ServiceAccess.csv")

    GD_Shelter = nfv.dfFix(Bibliography, "Slum population rate (%)",
                           "SPECIFIC INFORMATION - SETTLEMENTS LEVEL")
    nt.mkCSV(GD_Shelter, "GD_Shelter.csv")

    Comun = pd.read_excel(nfv.getPath(nt.mainpath, "Bibliography_120220.xlsx"))
    Comun = nfv.fixBibliography(Comun)

    GD_Religion = nfv.dfFix(Comun, "Religion 1", "Language")
    df1 = nfv.dropRow(GD_Religion, 1)
    np_array1 = np.array(df1)
    df2 = nfv.dropRow(GD_Religion, 0)
    np_array2 = np.array(df2)
    np_array3 = np.concatenate((np_array1, np_array2), axis=1)
    GD_Religion = pd.DataFrame(np_array3)
    GD_Religion = GD_Religion.transpose()
    GD_Religion = GD_Religion[0].unique()
    GD_Religion = pd.DataFrame(GD_Religion)
    GD_Religion = GD_Religion.dropna()
    nt.mkCSV(GD_Religion, "GD_Religion.csv")

    GD_Language = nfv.dfFix(Comun, "Language 1", "Economy and well-being")
    df1 = nfv.dropRow(GD_Language, 1)
    np_array1 = np.array(df1)
    df2 = nfv.dropRow(GD_Language, 0)
    np_array2 = np.array(df2)
    np_array3 = np.concatenate((np_array1, np_array2), axis=1)
    GD_Language = pd.DataFrame(np_array3)
    GD_Language = GD_Language.transpose()
    GD_Language = GD_Language[0].unique()
    GD_Language = pd.DataFrame(GD_Language)
    GD_Language = GD_Language.dropna()
    nt.mkCSV(GD_Language, "GD_Language.csv")
예제 #29
0
def campData(Bibliography, Entities, LocalLeaders):
    Camp_MovementReason = nfv.dfFix(Bibliography, "Reason 1", "Climate")
    Camp_MovementReason = Camp_MovementReason.transpose()
    nt.mkCSV(Camp_MovementReason, "Camp_MovementReason.csv")

    Camp_Integration = nfv.dfFix(Entities, "GENERAL_INFORMATION:Relationship",
                                 "GENERAL_INFORMATION:Movement_outside")
    nt.mkCSV(Camp_Integration, "Camp_Integration.csv")

    Camp_NaturalHazard = nfv.dfFix(Entities,
                                   "Enviormental_Issues:Risk:Risk_Flood",
                                   "Enviormental_Issues:Deforestation")
    Camp_NaturalHazard = nt.getSubColumnNames(Camp_NaturalHazard, 30)
    nt.mkCSV(Camp_NaturalHazard, "Camp_NaturalHazard.csv")

    Camp_NaturalHazard_Has_Camp = nfv.dfFix(
        Entities, "Enviormental_Issues:Risk:Risk_Flood",
        "Enviormental_Issues:Deforestation")
    hazards = nt.getSubColumnNames(Camp_NaturalHazard_Has_Camp, 30)
    Camp_NaturalHazard_Has_Camp = nt.get_number(Camp_NaturalHazard_Has_Camp,
                                                hazards)
    nt.mkCSV(Camp_NaturalHazard_Has_Camp, "Camp_NaturalHazard_Has_Camp.csv")

    Camp_LocalVegetation = nfv.dfFix(Entities,
                                     "Enviormental_Issues:Native_Plant",
                                     "Enviormental_Issues:Native_Crops")
    Camp_LocalVegetation = nt.separateValues(Camp_LocalVegetation)
    nt.mkCSV(Camp_LocalVegetation,
             "Camp_LocalVegetation.csv")  # ¿MODIFICAR FOLMULARIO?

    Camp_LocalCrop = nfv.dfFix(Entities, "Enviormental_Issues:Native_Crops",
                               "Water_table")
    Camp_LocalCrop = nt.separateValues(Camp_LocalCrop)
    nt.mkCSV(Camp_LocalCrop, "Camp_LocalCrop.csv")  #MODIFICAR FOLMULARIO?

    df3 = nfv.dfFix(Entities, "Enviormental_Issues:High_enviormental_value",
                    "Enviormental_Issues:Native_Plant")
    df3 = df3.isin(["yes"])
    df4 = nfv.dfFix(Entities, "Enviormental_Issues:Deforestation",
                    "Enviormental_Issues:High_enviormental_value")
    Camp_Enviroment = nt.concatDF(df3, df4)
    nt.mkCSV(Camp_Enviroment, "Camp_Enviroment.csv")

    df1 = nfv.dfFix(Bibliography, "Tropical (Write one: Af, Aw or Am)",
                    "Temperature")
    df1 = df1.transpose()
    df1 = df1.dropna()
    df1 = df1.transpose()
    df2 = nfv.dfFix(Bibliography, "Max (ºC)", "Annual precipitation")
    df3 = nfv.dfFix(Bibliography, "Max (mm)", "Additional information")
    Camp_ClimaticRegion = nt.concatDF(df1, nt.concatDF(df2, df3))
    nt.mkCSV(Camp_ClimaticRegion, "Camp_ClimaticRegion.csv")

    Camp_EnergySource = [
        'diesel', 'Kerosene', 'Ethanol', 'gas', 'firewood', 'diesel genset',
        'electricity', 'solar panel'
    ]
    Camp_EnergySource = pd.DataFrame(Camp_EnergySource)
    nt.mkCSV(Camp_EnergySource, "Camp_EnergySource.csv")

    df1 = nfv.dfFix(Entities, "Fuel_Cost:Fuel_Cost_Diesel",
                    "ENERGY:Electricity_network")
    df2 = nfv.dfFix(LocalLeaders, "Costs:cost_firewood", "meta:instanceID")
    Camp_EnergySource_Has_Camp = nt.concatDF(df1, df2)
    source = pd.DataFrame([
        'diesel', 'Kerosene', 'Ethanol', 'gas', 'firewood', 'diesel genset',
        'electricity', 'solar panel'
    ])
    Camp_EnergySource_Has_Camp = nt.get_number(Camp_EnergySource_Has_Camp,
                                               source)
    nt.mkCSV(Camp_EnergySource_Has_Camp, "Camp_EnergySource_Has_Camp.csv")

    Camp_Mobility = nfv.dfFix(Entities, "GENERAL_INFORMATION:Movement_outside",
                              "Population:Women:Infants")
    nt.mkCSV(Camp_Mobility, "Camp_Mobility.csv")

    Camp_Shelter = nfv.dfFix(Entities, "Shelter:Housing_Improvement",
                             "Shelter:Total_shelter")
    nt.mkCSV(Camp_Shelter, "Camp_Shelter.csv")
예제 #30
0
def writteExpanPlan(query, f, cursor, communityType):
    Entities = nfv.setDataByIndex(
        pd.read_csv(nfv.getPath(mainpath,
                                "NAUTIA_1_0_Entities_Interview_results.csv"),
                    float_precision="high"), communityType)
    inf_expandplanbeneficiaries = nfv.dfFix(Entities,
                                            "ENERGY:Covered_services",
                                            "ENERGY:Power_failure")
    inf_expandplanbeneficiaries = nt.separateValues(
        inf_expandplanbeneficiaries)
    cursor.execute("SELECT * FROM inf_expandplanbeneficiaries")
    array = np.array(cursor.fetchall())
    pk = np.array([])
    for row in array:
        for row2 in np.array(inf_expandplanbeneficiaries):
            for elem in row2:
                if (row[1] == elem):
                    pk = np.append(pk, elem)
    cursor.execute(
        "SELECT idINF_EnergyInfrastructure FROM INF_EnergyInfrastructure  ORDER BY idINF_EnergyInfrastructure DESC LIMIT 1"
    )
    pkInf = np.array(cursor.fetchall())
    cursor.execute(
        "SELECT Community_idCommunity FROM INF_EnergyInfrastructure  ORDER BY Community_idCommunity DESC LIMIT 1"
    )
    fkInf = np.array(cursor.fetchall())
    v1 = v2 = np.array([])
    for elem in pk:
        v1 = np.append(v1, pkInf)
        v2 = np.append(v2, fkInf)
    result = nt.concatDF(pd.DataFrame(pk),
                         nt.concatDF(pd.DataFrame(v1), pd.DataFrame(v2)))
    nt.mkCSV(result,
             "inf_expandplanbeneficiaries_has_inf_energyinfrastructure.csv")
    cursor.execute(
        "SHOW columns FROM inf_expandplanbeneficiaries_has_inf_energyinfrastructure"
    )
    columnList = cursor.fetchall()
    table = "inf_expandplanbeneficiaries_has_inf_energyinfrastructure"
    f.write(query.getquery1() + table + ".csv'\n" + query.getquery2() + " " +
            table + "\n" + query.getquery3() + "\n" + query.getquery4() + "\n")
    pk = True
    string = np.array([], dtype=str)
    for column in columnList:
        if (pk):
            pk = False
        else:
            string = np.append(string, column[0])
    f.write("    (")
    for column in string:
        if (column != string[-1]):
            f.write("@" + column + ",")
        else:
            f.write("@" + column + ")\n")
    f.write("SET ")
    for column in string:
        if (column != string[-1]):
            if (column == string[0]):
                f.write(column + " = NULLIF(@" + column + ",''),\n")
            else:
                f.write("    " + column + " = NULLIF(@" + column + ",''),\n")
        else:
            if (column == string[0]):
                f.write(column + " = NULLIF(@" + column + ",'');\n\n")
            else:
                f.write("    " + column + " = NULLIF(@" + column + ",'');\n\n")