import numpy as np import dataset_util as DS import NaiveBayes as NB g_K_param = 100 if __name__ == '__main__': print("\t\t\t============ Chap4 Naive Bayes ============") x, y = DS.load_dataset(r'.\dataset.dat') ## convert y to label y = np.array(list(map(lambda y1: DS.g_Labels.index(y1), y))) yy = np.reshape(y, (-1, 1)) du = DS.DataUtil(x) xx = du.discrete_variant_EqtWidth(x, g_K_param) model = NB.Naive_Bayes(g_K_param) model.train(xx, yy) x_t = DS.load_test_ds(r'.\testds.dat') xx_t = du.discrete_variant_EqtWidth(x_t) y_t, y_t_p = model(xx_t) yy_t = list(DS.g_Labels[int(y1)] for y1 in y_t) print(">>>>Test DATA is: >>>>") print(x_t) print(">>>>Navie Bayes give the answer is :>>>>") print(yy_t) print(">>>>Navie Bayes answer possibility is :>>>>") print(y_t_p) pass
import NaiveBayes #from pyspark.mllib.classification import NaiveBayes #from pyspark.mllib.linalg import Vectors #from pyspark.mllib.regression import LabeledPoint #from pyspark.mllib.feature import HashingTF #from pyspark.mllib.feature import IDF from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession import os # conf = SparkConf().setAppName("appName").setMaster("local") # conf.set("spark.executor.memory", "2g") # sc = SparkContext(conf=conf) # spark = SparkSession(sc) classifier = NaiveBayes.Naive_Bayes() model = classifier.train() # # sentence=[] # sentence.append("I really hate rain! It makes me feel sick!") # sentence.append("Sunny day! Feeling warm and pleased!") # # for i in sentence: # print(i, "rediction: ", model.predict(i))