def run(self, name, datafiles, goldnet_file): import numpy os.chdir(os.environ["gene_path"]) datastore = ReadData(datafiles[0], "steadystate") for file in datafiles[1:]: datastore.combine(ReadData(file, "steadystate")) datastore.normalize() settings = {} settings = ReadConfig(settings) # TODO: CHANGE ME settings["global"]["working_dir"] = os.getcwd() + '/' # Setup job manager print "Starting new job manager" jobman = JobManager(settings) # Make GENIE3 jobs genie3 = GENIE3() genie3.setup(datastore, settings, name) print "Queuing job..." jobman.queueJob(genie3) print jobman.queue print "Running queue..." jobman.runQueue() jobman.waitToClear() print "Queue finished" job = jobman.finished[0] print job.alg.gene_list print job.alg.read_output(settings) jobnet = job.alg.network print "PREDICTED NETWORK:" print job.alg.network.network print jobnet.original_network if goldnet_file != None: goldnet = Network() goldnet.read_goldstd(goldnet_file) print "GOLD NETWORK:" print goldnet.network print jobnet.analyzeMotifs(goldnet).ToString() print jobnet.calculateAccuracy(goldnet) return jobnet.original_network
os.mkdir(settings["global"]["output_dir"]) # Read in the gold standard network #goldnet = Network() #goldnet.read_goldstd(settings["global"]["small_network_goldnet_file"]) #Get a list of the knockout files #ko_file = settings["global"]["small_network_knockout_file"].split() #kd_file = settings["global"]["small_network_knockdown_file"].split() #ts_file = settings["global"]["small_network_timeseries_file"].split() #wt_file = settings["global"]["small_network_wildtype_file"].split() # Read in the gold standard network goldnet = Network() goldnet.read_goldstd(settings["global"]["large_network_goldnet_file"]) ko_file = settings["global"]["large_network_knockout_file"].split() kd_file = settings["global"]["large_network_knockdown_file"].split() ts_file = settings["global"]["large_network_timeseries_file"].split() wt_file = settings["global"]["large_network_wildtype_file"].split() # Read data into program # Where the format is "FILENAME" "DATATYPE" knockout_storage = ReadData(ko_file[0], "knockout") knockdown_storage = ReadData(kd_file[0], "knockdown") timeseries_storage = ReadData(ts_file[0], "timeseries") wildtype_storage = ReadData(wt_file[0], "wildtype") wildtype_storage.combine(knockout_storage) wildtype_storage.combine(knockdown_storage)
wildtypes[name] = ReadData(exp_data_directory + '/' + name + '/' + wildtype_filename, "wildtype") #wildtypes[name].normalize() multifactorials[name] = ReadData(exp_data_directory + '/' + name + '/' + multifactorial_filename, "multifactorial") #multifactorials[name].normalize() goldnets[name] = exp_data_directory + '/' + name + '/' + goldstandard_filename jobman = JobManager(settings) # Get TFS from the goldstandard tfs = {} for name in data.keys(): t = [] goldnet = Network() goldnet.read_goldstd(goldnets[name]) for gene1 in goldnet.network: for gene2 in goldnet.network[gene1]: if goldnet.network[gene1][gene2] > 0: t.append(gene1) tfs[name] = list(set(t)) goldnet = Network() goldnet.read_goldstd(goldnets[data.keys()[0]]) genie3nets = {} ts_storage = data[name] settings["global"]["time_series_delta_t"] = (1008.0 / (len(ts_storage[0].experiments)-1)) #combined = timeseries_as_steady_state[name][0]
from JobManager import * from Network import * from Generate_Grid import * from tdaracne import * from dfg4grn import * from banjo import * from ReadConfig import * settings = {} settings = ReadConfig(settings) settings["global"]["working_dir"] = os.getcwd() + "/" goldnet = Network() goldnet.read_goldstd("datasets/dream4_10/dream4_10_gold.tsv") # Create date string to append to output_dir t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = ( settings["global"]["output_dir"] + "/" + settings["global"]["experiment_name"] + "-" + t + "/" ) os.mkdir(settings["global"]["output_dir"]) ts_filenames = settings["global"]["time_series_files"].split() delta_t = [50] * 20 settings["global"]["time_series_delta_t"] = delta_t # Read data into program timeseries_storage = ReadData(ts_filenames[0], True)
def run(self, kofile, tsfile, wtfile, datafiles, name, goldnet_file, normalize=False): os.chdir(os.environ["gene_path"]) knockout_storage = ReadData(kofile, "knockout") print "Reading in knockout data" wildtype_storage = ReadData(wtfile, "steadystate") if datafiles == []: other_storage = None else: other_storage = ReadData(datafiles[0], "steadystate") for file in datafiles[1:]: other_storage.combine(ReadData(file, "steadystate")) timeseries_storage = None if tsfile != None: timeseries_storage = ReadData(tsfile, "timeseries") #for ts in timeseries_storage: #ts.normalize() #if normalize: #knockout_storage.normalize() #wildtype_storage.normalize() #other_storage.normalize() settings = {} settings = ReadConfig(settings) # TODO: CHANGE ME settings["global"]["working_dir"] = os.getcwd() + '/' # Setup job manager print "Starting new job manager" jobman = JobManager(settings) # Make inferelator jobs inferelatorjob = inferelator() inferelatorjob.setup(knockout_storage, wildtype_storage, settings, timeseries_storage, other_storage, name) print "Queuing job..." jobman.queueJob(inferelatorjob) print jobman.queue print "Running queue..." jobman.runQueue() jobman.waitToClear() print "Queue finished" job = jobman.finished[0] #print job.alg.gene_list #print job.alg.read_output(settings) jobnet = job.alg.network #print "PREDICTED NETWORK:" #print job.alg.network.network print jobnet.original_network if goldnet_file != None: goldnet = Network() goldnet.read_goldstd(goldnet_file) #print "GOLD NETWORK:" #print goldnet.network #print jobnet.analyzeMotifs(goldnet).ToString() print jobnet.calculateAccuracy(goldnet) import AnalyzeResults tprs, fprs, rocs = AnalyzeResults.GenerateMultiROC(jobman.finished, goldnet ) ps, rs, precs = AnalyzeResults.GenerateMultiPR(jobman.finished, goldnet) print "Area Under ROC" print rocs print "Area Under PR" print precs return jobnet.original_network
#pert_data = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + multifactorial_filename, "multifactorial") #multifactorials.normalize() ts_pert_data["goldnet_file"] = exp_data_directory + "/" + exp_set + "/" + '/TS/' + goldstandard_filename ko_pert_data["ss_data"] = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + wildtype_filename, "wildtype") ko_pert_data["multifactorial_data"] = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + multifactorial_filename, "multifactorial") ko_pert_data["knockout_data"] = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + knockout_filename, "knockout") ko_pert_data["combined"] = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + knockout_filename, "knockout") ko_pert_data["combined"].combine(ko_pert_data["multifactorial_data"]) pert_data["multifactorial_data"] = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + multifactorial_filename, "multifactorial") pert_data["knockout_data"] = ReadData(exp_data_directory + "/" + exp_set + "/" + '/TS/' + knockout_filename, "knockout") goldnet = Network() goldnet.read_goldstd(ts_pert_data["goldnet_file"]) ###################### # Clip down the pert data so it is the correct size for the exp ###################### # This is the num for everything to use ts_only_data["timeseries"] = [ts_only_data["timeseries"][0]] ts_data_num_exp = len(ts_only_data["timeseries"]) * len(ts_only_data["timeseries"][0].experiments) ts_only_data["multifactorial_data"].experiments = ts_only_data["multifactorial_data"].experiments[0:len(ts_only_data["multifactorial_data"].experiments) - ts_data_num_exp] ts_pert_data["timeseries"] = ts_pert_data["timeseries"][0:len(ts_pert_data["timeseries"]) / 2] num_ts_pert = len(ts_pert_data["timeseries"]) * len(ts_pert_data["timeseries"][0].experiments)
def run(self, datafiles=None, name=None, goldnet_file=None, topd=None, restk=None): import numpy os.chdir(os.environ["gene_path"]) print "Reading in data" data_storage = ReadData(datafiles[0], "steadystate") for file in datafiles[1:]: data_storage.combine(ReadData(file, "steadystate")) settings = {} settings = ReadConfig(settings) # TODO: CHANGE ME settings["global"]["working_dir"] = os.getcwd() + "/" # Setup job manager print "Starting new job manager" jobman = JobManager(settings) # Make nir jobs nirjob = NIR() nirjob.setup(data_storage, settings, name, topd, restk) print "Queuing job..." jobman.queueJob(nirjob) print jobman.queue print "Running queue..." jobman.runQueue() jobman.waitToClear() print "Queue finished" job = jobman.finished[0] print job.alg.gene_list print job.alg.read_output(settings) jobnet = job.alg.network print "PREDICTED NETWORK:" print job.alg.network.network if goldnet_file != None: goldnet = Network() goldnet.read_goldstd(goldnet_file) # print "GOLD NETWORK:" # print goldnet.network # print jobnet.analyzeMotifs(goldnet).ToString() print jobnet.calculateAccuracy(goldnet) import AnalyzeResults tprs, fprs, rocs = AnalyzeResults.GenerateMultiROC( jobman.finished, goldnet, True, job.alg.output_dir + "/ROC.pdf" ) ps, rs, precs = AnalyzeResults.GenerateMultiPR( jobman.finished, goldnet, True, job.alg.output_dir + "/PR.pdf" ) print "Area Under ROC" print rocs print "Area Under PR" print precs return job.alg.network.network
# Create date string to append to output_dir t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = settings["global"]["output_dir"] + "/" + \ settings["global"]["experiment_name"] + "-" + t + "/" os.mkdir(settings["global"]["output_dir"]) # Read in the gold standard network # Read in the gold standard network goldnet = Network() #goldnet.read_goldstd(settings["global"]["large_network_goldnet_file"]) if sys.argv[1] == "small": goldnet.read_goldstd(settings["global"]["small_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["small_network_knockout_file"].split() kd_file = settings["global"]["small_network_knockdown_file"].split() ts_file = settings["global"]["small_network_timeseries_file"].split() wt_file = settings["global"]["small_network_wildtype_file"].split() if sys.argv[1] == "medium": goldnet.read_goldstd(settings["global"]["medium_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["medium_network_knockout_file"].split() kd_file = settings["global"]["medium_network_knockdown_file"].split() ts_file = settings["global"]["medium_network_timeseries_file"].split() wt_file = settings["global"]["medium_network_wildtype_file"].split() if sys.argv[1] == "medium2":
# Instantsiate settings file settings = {} settings = ReadConfig(settings) settings["global"]["working_dir"] = os.getcwd() + '/' # Create date string to append to output_dir t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = settings["global"]["output_dir"] + "/" + \ settings["global"]["experiment_name"] + "-" + t + "/" os.mkdir(settings["global"]["output_dir"]) # Read in the gold standard network goldnet = Network() goldnet.read_goldstd(settings["global"]["medium_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["medium_network_knockout_file"].split() kd_file = settings["global"]["medium_network_knockdown_file"].split() ts_file = settings["global"]["medium_network_timeseries_file"].split() wt_file = settings["global"]["medium_network_wildtype_file"].split() # Read in the gold standard network #goldnet = Network() #goldnet.read_goldstd(settings["global"]["large_network_goldnet_file"]) #ko_file = settings["global"]["large_network_knockout_file"].split() #kd_file = settings["global"]["large_network_knockdown_file"].split() #ts_file = settings["global"]["large_network_timeseries_file"].split()
from JobManager import * from Network import * from Generate_Grid import * def get_immediate_subdirectories(dir): return [name for name in os.listdir(dir) if os.path.isdir(os.path.join(dir, name))] sys.path += get_immediate_subdirectories("./") from ReadConfig import * settings = {} settings = ReadConfig(settings) settings["global"]["working_dir"] = os.getcwd() + '/' goldnet = Network() goldnet.read_goldstd(settings["global"]["small_network_goldnet_file"]) # Create date string to append to output_dir t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = settings["global"]["output_dir"] + "/" + \ settings["global"]["experiment_name"] + "-" + t + "/" os.mkdir(settings["global"]["output_dir"]) knockdown_filenames = settings["global"]["small_network_knockdown_file"].split() knockdown_storage = ReadData(knockdown_filenames[0], "knockdown") from nirest import * settings = ReadConfig(settings, "./config/default_values/nirest.cfg") settings = ReadConfig(settings, settings["nirest"]["config"])
def get_example_data_files(name, settings): # Read in gold standard network goldnet = Network() dko_file = None if name == "small": goldnet.read_goldstd(settings["global"]["small_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["small_network_knockout_file"].split() kd_file = settings["global"]["small_network_knockdown_file"].split() ts_file = settings["global"]["small_network_timeseries_file"].split() wt_file = settings["global"]["small_network_wildtype_file"].split() mf_file = settings["global"]["small_network_multifactorial_file"].split() elif name == "medium": goldnet.read_goldstd(settings["global"]["medium_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["medium_network_knockout_file"].split() kd_file = settings["global"]["medium_network_knockdown_file"].split() ts_file = settings["global"]["medium_network_timeseries_file"].split() wt_file = settings["global"]["medium_network_wildtype_file"].split() mf_file = settings["global"]["medium_network_multifactorial_file"].split() elif name == "medium_2": goldnet.read_goldstd(settings["global"]["medium2_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["medium2_network_knockout_file"].split() kd_file = settings["global"]["medium2_network_knockdown_file"].split() ts_file = settings["global"]["medium2_network_timeseries_file"].split() wt_file = settings["global"]["medium2_network_wildtype_file"].split() mf_file = settings["global"]["medium2_network_multifactorial_file"].split() elif name == "dream410": goldnet.read_goldstd(settings["global"]["dream410_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream410_network_knockout_file"].split() kd_file = settings["global"]["dream410_network_knockdown_file"].split() ts_file = settings["global"]["dream410_network_timeseries_file"].split() wt_file = settings["global"]["dream410_network_wildtype_file"].split() mf_file = settings["global"]["dream410_network_multifactorial_file"].split() dko_file = settings["global"]["dream410_network_doubleknockout_file"].split() dko_idx_file = settings["global"]["dream410_network_doubleknockout_index_file"].split() elif name == "dream410_2": goldnet.read_goldstd(settings["global"]["dream410_2_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream410_2_network_knockout_file"].split() kd_file = settings["global"]["dream410_2_network_knockdown_file"].split() ts_file = settings["global"]["dream410_2_network_timeseries_file"].split() wt_file = settings["global"]["dream410_2_network_wildtype_file"].split() mf_file = settings["global"]["dream410_2_network_multifactorial_file"].split() elif name == "dream410_3": goldnet.read_goldstd(settings["global"]["dream410_3_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream410_3_network_knockout_file"].split() kd_file = settings["global"]["dream410_3_network_knockdown_file"].split() ts_file = settings["global"]["dream410_3_network_timeseries_file"].split() wt_file = settings["global"]["dream410_3_network_wildtype_file"].split() mf_file = settings["global"]["dream410_3_network_multifactorial_file"].split() elif name == "dream410_4": goldnet.read_goldstd(settings["global"]["dream410_4_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream410_4_network_knockout_file"].split() kd_file = settings["global"]["dream410_4_network_knockdown_file"].split() ts_file = settings["global"]["dream410_4_network_timeseries_file"].split() wt_file = settings["global"]["dream410_4_network_wildtype_file"].split() mf_file = settings["global"]["dream410_4_network_multifactorial_file"].split() elif name == "dream410_5": goldnet.read_goldstd(settings["global"]["dream410_5_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream410_5_network_knockout_file"].split() kd_file = settings["global"]["dream410_5_network_knockdown_file"].split() ts_file = settings["global"]["dream410_5_network_timeseries_file"].split() wt_file = settings["global"]["dream410_5_network_wildtype_file"].split() mf_file = settings["global"]["dream410_5_network_multifactorial_file"].split() elif name == "dream4100": goldnet.read_goldstd(settings["global"]["dream4100_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream4100_network_knockout_file"].split() kd_file = settings["global"]["dream4100_network_knockdown_file"].split() ts_file = settings["global"]["dream4100_network_timeseries_file"].split() wt_file = settings["global"]["dream4100_network_wildtype_file"].split() mf_file = settings["global"]["dream4100_network_multifactorial_file"].split() elif name == "dream4100_2": goldnet.read_goldstd(settings["global"]["dream4100_2_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream4100_2_network_knockout_file"].split() kd_file = settings["global"]["dream4100_2_network_knockdown_file"].split() ts_file = settings["global"]["dream4100_2_network_timeseries_file"].split() wt_file = settings["global"]["dream4100_2_network_wildtype_file"].split() mf_file = settings["global"]["dream4100_2_network_multifactorial_file"].split() elif name == "dream4100_3": goldnet.read_goldstd(settings["global"]["dream4100_3_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream4100_3_network_knockout_file"].split() kd_file = settings["global"]["dream4100_3_network_knockdown_file"].split() ts_file = settings["global"]["dream4100_3_network_timeseries_file"].split() wt_file = settings["global"]["dream4100_3_network_wildtype_file"].split() mf_file = settings["global"]["dream4100_3_network_multifactorial_file"].split() elif name == "dream4100_4": goldnet.read_goldstd(settings["global"]["dream4100_4_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream4100_4_network_knockout_file"].split() kd_file = settings["global"]["dream4100_4_network_knockdown_file"].split() ts_file = settings["global"]["dream4100_4_network_timeseries_file"].split() wt_file = settings["global"]["dream4100_4_network_wildtype_file"].split() mf_file = settings["global"]["dream4100_4_network_multifactorial_file"].split() elif name == "dream4100_5": goldnet.read_goldstd(settings["global"]["dream4100_5_network_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["dream4100_5_network_knockout_file"].split() kd_file = settings["global"]["dream4100_5_network_knockdown_file"].split() ts_file = settings["global"]["dream4100_5_network_timeseries_file"].split() wt_file = settings["global"]["dream4100_5_network_wildtype_file"].split() mf_file = settings["global"]["dream4100_5_network_multifactorial_file"].split() elif name == "ecoli400": goldnet.read_goldstd(settings["global"]["ecoli400_goldnet_file"]) #Get a list of the knockout files ko_file = settings["global"]["ecoli400_knockout_file"].split() kd_file = settings["global"]["ecoli400_knockdown_file"].split() ts_file = settings["global"]["ecoli400_timeseries_file"].split() wt_file = settings["global"]["ecoli400_wildtype_file"].split() mf_file = settings["global"]["ecoli400_multifactorial_file"].split() else: print "ERROR: Dataset {0} not found, exiting.".format(name) exit() if dko_file != None: return ko_file, kd_file, ts_file, wt_file, mf_file, goldnet, dko_file, dko_idx_file else: return ko_file, kd_file, ts_file, wt_file, mf_file, goldnet
wildtypes[name] = ReadData(exp_data_directory + '/' + name + '/' + wildtype_filename, "wildtype") #wildtypes[name].normalize() multifactorials[name] = ReadData(exp_data_directory + '/' + name + '/' + multifactorial_filename, "multifactorial") #multifactorials[name].normalize() goldnets[name] = exp_data_directory + '/' + name + '/' + goldstandard_filename jobman = JobManager(settings) # Get TFS from the goldstandard tfs = {} for name in data.keys(): t = [] goldnet = Network() goldnet.read_goldstd(goldnets[name]) for gene1 in goldnet.network: for gene2 in goldnet.network[gene1]: if goldnet.network[gene1][gene2] > 0: t.append(gene1) tfs[name] = list(set(t)) goldnet = Network() goldnet.read_goldstd(goldnets[exp_name]) ts_storage = data[exp_name] settings["global"]["time_series_delta_t"] = int((1008.0 / (len(ts_storage[0].experiments)-1))) print settings["global"]["time_series_delta_t"]
from tdaracne import * from ReadConfig import * # Initialize settings file settings = {} settings = ReadConfig(settings) settings["global"]["working_dir"] = os.getcwd() + '/' settings["global"]["experiment_name"] = "TDARACNE-"+sys.argv[1] if len(sys.argv) > 2: settings["global"]["experiment_name"] += "-" + sys.argv[2] goldnet = Network() goldnet.read_goldstd("datasets/dream4_10/dream4_10_gold.tsv") # Create date string to append to output_dir t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = settings["global"]["output_dir"] + "/" + \ settings["global"]["experiment_name"] + "-" + t + "/" os.mkdir(settings["global"]["output_dir"]) # Read in the gold standard network # Read in the gold standard network goldnet = Network() #goldnet.read_goldstd(settings["global"]["large_network_goldnet_file"]) if sys.argv[1] == "small": goldnet.read_goldstd(settings["global"]["small_network_goldnet_file"])
settings["global"]["output_dir"] + "/" + settings["global"]["experiment_name"] + "-" + t + "/" ) os.mkdir(settings["global"]["output_dir"]) # Read in the gold standard network # Read in the gold standard network goldnet = Network() # goldnet.read_goldstd(settings["global"]["large_network_goldnet_file"]) # ko_file, kd_file, ts_file, wt_file, mf_file, goldnet = get_example_data_files(sys.argv[1], settings) ko_file = "algorithms/genenetweaver/InSilicoSize10-Ecoli1_knockouts.tsv" kd_file = "algorithms/genenetweaver/InSilicoSize10-Ecoli1_knockdowns.tsv" wt_file = "algorithms/genenetweaver/InSilicoSize10-Ecoli1_wildtype.tsv" ts_file = "algorithms/genenetweaver/InSilicoSize10-Ecoli1_dream4_timeseries.tsv" goldnet.read_goldstd("algorithms/genenetweaver/InSilicoSize10-Ecoli1_goldstandard.tsv") # Read data into program # Where the format is "FILENAME" "DATATYPE" knockout_storage = ReadData(ko_file, "knockout") knockdown_storage = ReadData(kd_file, "knockdown") timeseries_storage = ReadData(ts_file, "timeseries") wildtype_storage = ReadData(wt_file, "wildtype") # Setup job manager jobman = JobManager(settings) # Make MCZ job mczjob = MCZ()
from JobManager import * from Network import * from Generate_Grid import * def get_immediate_subdirectories(dir): return [name for name in os.listdir(dir) if os.path.isdir(os.path.join(dir, name))] sys.path += get_immediate_subdirectories("./") from ReadConfig import * settings = {} settings = ReadConfig(settings) settings["global"]["working_dir"] = os.getcwd() + '/' goldnet = Network() goldnet.read_goldstd("datasets/Small_Network/Ecoli-1_goldstandard.tsv") print goldnet.network # Create date string to append to output_dir t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = settings["global"]["output_dir"] + "/" + \ settings["global"]["experiment_name"] + "-" + t + "/" os.mkdir(settings["global"]["output_dir"]) settings["global"]["time_series_files"] = "datasets/Small_Network/Ecoli-1_dream4_timeseries.tsv" ts_filenames = settings["global"]["time_series_files"].split() delta_t = [50]*20 settings["global"]["time_series_delta_t"] = delta_t #delta_t = settings["global"]["time_series_delta_t"].split() print delta_t timeseries_storage = []
wildtypes[name] = ReadData(exp_data_directory + '/' + name + '/' + wildtype_filename, "wildtype") #wildtypes[name].normalize() multifactorials[name] = ReadData(exp_data_directory + '/' + name + '/' + multifactorial_filename, "multifactorial") #multifactorials[name].normalize() goldnets[name] = exp_data_directory + '/' + name + '/' + goldstandard_filename jobman = JobManager(settings) # Get TFS from the goldstandard tfs = {} for name in data.keys(): t = [] goldnet = Network() goldnet.read_goldstd(goldnets[name]) for gene1 in goldnet.network: for gene2 in goldnet.network[gene1]: if goldnet.network[gene1][gene2] > 0: t.append(gene1) tfs[name] = list(set(t)) for key in goldnets.keys(): goldnet = Network() goldnet.read_goldstd(goldnets[key]) goldnets[key] = goldnet genie3nets = {} for i in range(20):
#for ts in data: #ts.normalize() knockouts = ReadData(exp_data_directory + '/' + knockout_filename, "knockout") #knockouts.normalize() knockdowns = ReadData(exp_data_directory + '/' + knockdown_filename, "knockdown") #knockdowns.normalize() ss_data = ReadData(exp_data_directory + '/' + wildtype_filename, "wildtype") #wildtypes.normalize() multifactorial_data = ReadData(exp_data_directory + '/' + multifactorial_filename, "multifactorial") #pert_data = ReadData(exp_data_directory + '/' + multifactorial_filename, "multifactorial") pert_data = ReadData(exp_data_directory + '/' + knockout_filename, "knockout") #multifactorials.normalize() goldnet_file = exp_data_directory + '/' + goldstandard_filename goldnet = Network() goldnet.read_goldstd(goldnet_file) # Initialize settings file settings = {} settings = ReadConfig(settings) settings["global"]["working_dir"] = os.getcwd() + '/' settings["global"]["experiment_name"] = "Kranthi-SimDex-NBoot-{0}".format(nboot) settings["global"]["n_processors"] = 1 # Set up output directory t = datetime.now().strftime("%Y-%m-%d_%H.%M.%S") settings["global"]["output_dir"] = settings["global"]["output_dir"] + "/" + \ settings["global"]["experiment_name"] + "-" + t + "/" os.mkdir(settings["global"]["output_dir"])