from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': testName = "LR03-testLRCNN01-GA" lr = NeuralNetworkCalculator(3, 10) lr.load('nn_data.csv') lr.runCnt = 100 lr.calcByGA(500, [-10.0, 10.0], 0.05) print lr.betas print lr.mse lr.log(testName) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.fitnessVal) #plt.show() plt.savefig(testName) print lr.fitnessVal[lr.runCnt-1]
from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': #lr = NeuralNetworkCalculator(7) #lr.load('auto_mpg-norm.csv') lr = NeuralNetworkCalculator(1) lr.load('mlp_reg.csv') #lr.calc() lr.runCnt = 100 lr.calcByGA(1000, [-10.0, 10.0]) #lr.calcByPSO(1000, [-5.0, 5.0]) print lr.betas print lr.mle fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.fitnessVal) plt.show() print lr.fitnessVal[lr.runCnt - 1]
from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': testName = "LR05-testLRCNN01-GA" lr = NeuralNetworkCalculator(3, 10) lr.loadTrainData('nn_data-train.csv') lr.loadTestData('nn_data-test.csv') lr.runCnt = 200 lr.calcByGA(1000, [-10.0, 10.0], 0.1) lr.calcTestMSE(lr.betas) print lr.betas print "TRAIN SIZE: " + str(lr.trainDataSize) + " MSE: " + str(lr.trainMSE) print "TEST SIZE: " + str(lr.testDataSize) + " MSE: " + str(lr.testMSE) lr.log(testName) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.trainFitnessVal) ax.set_xlabel("Iteration") ax.set_ylabel("Fitness") title_str = "Train M.S.E = " + str(lr.trainMSE) + " " title_str += "Test M.S.E = " + str(lr.testMSE) + "\n" title_str += " beta 0 = " + str(lr.betas[0]) title_str += ", beta 1 = " + str(lr.betas[1]) ax.set_title(title_str)
from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': testName = "LR02-testLRC07-GA" lr = NeuralNetworkCalculator(6, 10) lr.load('yacht-norm.csv') lr.runCnt = 100 lr.calcByGA(1000, [-10.0, 10.0]) print lr.betas print lr.mse lr.log(testName) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.fitnessVal) #plt.show() plt.savefig(testName) print lr.fitnessVal[lr.runCnt-1]
from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': testName = "LR02-testLRCNN01-PSO" lr = NeuralNetworkCalculator(3) lr.load('nn_data.csv') lr.runCnt = 100 lr.calcByPSO(500, [-10.0, 10.0]) print lr.betas print lr.mle lr.log(testName) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.fitnessVal) #plt.show() plt.savefig(testName) print lr.fitnessVal[lr.runCnt-1]
from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': testName = "LR02-testLRC06-GA" lr = NeuralNetworkCalculator(7, 10) lr.load('auto_mpg-norm.csv') lr.runCnt = 500 lr.calcByGA(2000, [-10.0, 10.0]) print lr.betas print lr.mse lr.log(testName) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.fitnessVal) #plt.show() plt.savefig(testName) print lr.fitnessVal[lr.runCnt - 1]
from NeuralNetworkCalculator import * import matplotlib.pyplot as plt if __name__ == '__main__': testName = "LR02-testLRC06-PSO" lr = NeuralNetworkCalculator(7) lr.load('auto_mpg-norm.csv') lr.runCnt = 100 lr.calcByPSO(500, [-10.0, 10.0]) print lr.betas print lr.mle lr.log(testName) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.arange(lr.runCnt), lr.fitnessVal) #plt.show() plt.savefig(testName) print lr.fitnessVal[lr.runCnt-1]