["algeria","angola","angola-exclave-called-cabinda","benin","botswana", \ "burundi","cameroon","central-african-republic","chad","congo","djibouti", \ "egypt","equatorial-guinea","ethiopia","gabon","gambia","ghana","guinea", \ "guinea-bissau","ivory-coast","kenya","lesotho","liberia","libya", \ "madagascar","malawi","mali","mauritania","mauritius","morocco", \ "mozambique","namibia","niger","nigeria","rwanda","senegal","sierra-leone",\ "somalia","south-africa","sudan","swaziland","tanzania","togo","tunisia", \ "uganda","upper-volta","western-sahara","zaire","zambia","zimbabwe"] # # Open a workstation. # wks_type = "ps" wks = Ngl.open_wks(wks_type,"cn12p") dirc = Ngl.ncargpath("data") z = Ngl.asciiread(dirc+"/asc/cn12n.asc",len_dims,"float") resources = Ngl.Resources() resources.sfXCStartV = -18.0 resources.sfXCEndV = 52.0 resources.sfYCStartV = -35.0 resources.sfYCEndV = 38.0 resources.vpXF = 0.1 resources.mpMaskAreaSpecifiers = mask_specs resources.mpFillAreaSpecifiers = fill_specs resources.pmLabelBarDisplayMode = "always" Ngl.contour_map(wks,z[:,:],resources) del resources Ngl.end()
# # Import all names from the NetCDF module. # from Scientific.IO.NetCDF import NetCDFFile # # Import Ngl support functions. # import Ngl # # Open the netCDF file. # file = NetCDFFile(Ngl.ncargpath("data") + "/cdf/pop.nc","r") # # Open a workstation. # wks_type = "ps" rlist = Ngl.Resources() rlist.wkColorMap = ["White","Black","Tan1","SkyBlue","Red"] wks = Ngl.open_wks(wks_type,"streamline",rlist) # # Get the u/v and lat/lon variables. # urot = file.variables["urot"] vrot = file.variables["vrot"] lat2d = file.variables["lat2d"][:,:] lon2d = file.variables["lon2d"][:,:]
# # Import the NetCDF reader. # from Scientific.IO.NetCDF import NetCDFFile # # Import Ngl support functions. # import Ngl # # Open the netCDF file. This file is a netCDF version of the file: # # ncargpath("data") + "/grb/ced1.lf00.t00z.eta.grb" # file = NetCDFFile(Ngl.ncargpath("data") + "/cdf/ced1.lf00.t00z.eta.nc","r") names = file.variables.keys() # Get the variable names print "\nVariable names:" # and print them out. print names # # For variable in names[1], retrieve and print all attributes # and their values (exclude printing the built-in functions). # print "\nThe attributes and their values for variable " + names[1] + ":" for attrib in dir(file.variables[names[1]]): t = getattr(file.variables[names[1]],attrib) if (type(t) != types.BuiltinFunctionType): print "Attribute " + "'" + attrib + "' has value:", t
# import Numeric # # Import the NetCDF reader. # from Scientific.IO.NetCDF import NetCDFFile # # Import Ngl support functions. # import Ngl # # Open three netCDF files and get variables. # data_dir = Ngl.ncargpath("data") cdf_file1 = NetCDFFile(data_dir + "/cdf/941110_P.cdf","r") cdf_file2 = NetCDFFile(data_dir + "/cdf/sstdata_netcdf.nc","r") cdf_file3 = NetCDFFile(data_dir + "/cdf/Pstorm.cdf","r") psl = cdf_file1.variables["Psl"] sst = cdf_file2.variables["sst"] pf = cdf_file3.variables["p"] psl_lon = cdf_file1.variables["lon"][:] psl_lat = cdf_file1.variables["lat"][:] psl_nlon = len(psl_lon) psl_nlat = len(psl_lat) sst_lon = cdf_file2.variables["lon"][:] sst_lat = cdf_file2.variables["lat"][:]
output[:,0] = x[:,0] output[:,nj-1] = x[:,nj-1] # # Return smoothed array. # return output # # Main program. # # # Read in the data variables from the NetCDF file. # cdf_file = NetCDFFile(Ngl.ncargpath("data") + "/cdf/meteo_data.nc","r") tempisobar = cdf_file.variables["tempisobar"][:,:] # temperature levels = cdf_file.variables["levels"][:] # levels taus = cdf_file.variables["taus"][:] # taus rh = cdf_file.variables["rh"][:,:] # realtive humidity ugrid = cdf_file.variables["ugrid"][:,:] # horizontal winds vgrid = cdf_file.variables["vgrid"][:,:] # vertical winds rain03 = cdf_file.variables["rain03"][:] # rainfall tempht = cdf_file.variables["tempht"][:] # surface temperatures # # Smooth temperature and humidity. # smothtemp = smth9(tempisobar, 0.50, -0.25) smothrh = smth9( rh, 0.50, -0.25)
# PO 3007, Boulder, Colorado # # Date: Tue Mar 1 14:58:28 MST 2005 # # Description: # Produces two plots using real data: # 1. Shows the full radiosonde. # 2. This "thins" the number of wind barbs plotted and # uses a Centigrade scale. Setting Wthin to 3 causes # the plotting of every third wind barb. # import Ngl nlvl = 65 ncol = 7 TestData = Ngl.asciiread(Ngl.ncargpath("data") + "/asc/sounding_ATS.asc", \ [nlvl,ncol], "float") # # Order: Surface is 'bottom' eg: 1000,950,935,897,... # p = TestData[:,0] # pressure [mb / hPa] tc = TestData[:,1] # temperature [C] tdc = TestData[:,2] # dew pt temp [C] z = TestData[:,4] # geopotential [gpm] wspd = TestData[:,5] # wind speed [knots or m/s] wdir = TestData[:,6] # meteorological wind dir wks_type = "ps" wks = Ngl.open_wks(wks_type, "skewt3")
import Numeric,sys,os # # Import the NetCDF reader. # from Scientific.IO.NetCDF import NetCDFFile # # Import Ngl support functions. # import Ngl # # Open the netCDF file. # cdf_file = NetCDFFile(Ngl.ncargpath("data") + "/cdf/contour.cdf","r") # # Associate Python variables with NetCDF variables. # These variables have associated attributes. # temp = cdf_file.variables["T"] # temperature Z = cdf_file.variables["Z"] # geopotential height pres = cdf_file.variables["Psl"] # pressure at mean sea level lat = cdf_file.variables["lat"] # latitude lon = cdf_file.variables["lon"] # longitude # # Open a workstation. # wks_type = "ps"
resources.tiYAxisString = "Y Axis" # Label for the Y axis resources.tiMainFont = "Helvetica" # Font for title resources.tiXAxisFont = "Helvetica" # Font for X axis label resources.tiYAxisFont = "Helvetica" # Font for Y axis label resources.xyMarkLineModes = ["Lines","Markers","MarkLines"] resources.xyMarkers = [0,1,3] # (none, dot, asterisk) resources.xyMarkerColor = 3 # Marker color resources.xyMarkerSizeF = 0.03 # Marker size (default # is 0.01) plot = Ngl.xy(wks,x,y2,resources) # Draw an XY plot. #---------- Begin fifth plot ------------------------------------------ filename = Ngl.ncargpath("data") + "/asc/xy.asc" data = Ngl.asciiread(filename,(129,4),"float") # # Define a two-dimensional array of data values based on # columns two and three of the input data. # uv = Numeric.zeros((2,129),Numeric.Float0) uv[0,:] = data[:,1] uv[1,:] = data[:,2] # # Use the first column of the input data file (which is simply the # row number) for longitude values. The fourth column of data is # not used in this example. #