def dataset_Leaf(self): """ Create the data for the Foliage Dataset :return: """ self.create_data_base() self.make_directories("other") print("Create id Text File ...") id_d = Make_Id_Species.Set_Id_Species(self.p + "train/", self.path_database["data"]) id_d.set_list_id() id_d.set_id_dic() print("Create File ...") for directories_data in ["normalization", "augmentation"]: self.m_dir.make_directories(id_d.path_dict, self.path_database[directories_data]) print("Normalize ...") norm_train = Normalization.Normalize( self.p + "train/", self.path_database["normalization"]) norm_train.normalize_dimension_image() print("Augmentation ...") d_augm = Data_Augmentation.Data_Augmentation( self.path_database["normalization"], self.path_database["augmentation"]) d_augm.create_augmentation(False) print("Normalize Validation...") shutil.rmtree(self.path_database["normalization"]) os.makedirs(self.a + "normalization/") self.m_dir.make_directories(id_d.path_dict, self.path_database["normalization"]) norm_test = Normalization.Normalize( self.p + "validation/", self.path_database["normalization"]) norm_test.normalize_dimension_image() norm_test.reduce() m_file = Make_train_val_file() print("Create Text File ...") path_for_val_train = { "train": "augmentation", "validation": "normalization" } for i in path_for_val_train: m_file.make_file(self.path_database[path_for_val_train[i]], self.path_database["data"] + i + ".txt", id_d.path_dict) self.lmdb_build.set_lmdb(self.path_database, self.a, self.caffe_path + "build/tools") mean = Create_Mean() mean.make_mean(self.a, self.a + "lmdb/", self.caffe_path + "build/tools")
def main(): print('My name is Abhishek Sinha') obj = Normalization.Normalize() obj.generateData()