def get_response_content(fs): # precompute some transition matrices P_drift_selection = pgmsinglesite.create_drift_selection_transition_matrix( fs.npop, fs.selection_ratio) MatrixUtil.assert_transition_matrix(P_drift_selection) P_mutation = pgmsinglesite.create_mutation_transition_matrix( fs.npop, fs.mutation_ab, fs.mutation_ba) MatrixUtil.assert_transition_matrix(P_mutation) # define the R table headers headers = ['generation', 'number.of.mutants'] # compute the path samples P = np.dot(P_drift_selection, P_mutation) mypath = PathSampler.sample_endpoint_conditioned_path( fs.nmutants_initial, fs.nmutants_final, fs.ngenerations, P) arr = [[i, nmutants] for i, nmutants in enumerate(mypath)] # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): f_info = ctmcmi.get_mutual_info_known_distn # define the R table headers headers = ['log.probability.ratio', 'mutual.information'] # make the array arr = [] for x in np.linspace(fs.x_min, fs.x_max, 101): row = [x] proc = evozoo.AlternatingHypercube_d_1(3) X = np.array([x]) distn = proc.get_distn(X) Q = proc.get_rate_matrix(X) info = f_info(Q, distn, fs.t) row.append(info) arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def main(args): # get the end positions, # forcing the first end position to be 5 # and the last end position to be 898. incr = (g_nchar - 5) / float(args.nlengths - 1) stop_positions = [5 + int(i * incr) for i in range(args.nlengths)] stop_positions[-1] = g_nchar # run BEAST and create the R stuff table_string, scripts = get_table_string_and_scripts( stop_positions, args.nsamples) # create the comboscript out = StringIO() print >> out, 'library(ggplot2)' print >> out, 'par(mfrow=c(3,1))' for script in scripts: print >> out, script comboscript = out.getvalue() # create the R output image device_name = Form.g_imageformat_to_r_function['pdf'] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name) if retcode: raise RUtil.RError(r_err) # write the image data with open(args.outfile, 'wb') as fout: fout.write(image_data)
def get_response_content(fs): # validate and store user input if fs.x_max <= fs.x_min: raise ValueError('check the min and max logs') f_info = divtime.get_fisher_info_known_distn_fast # define the R table headers headers = ['log.probability.ratio', 'fisher.information'] # make the array arr = [] for x in np.linspace(fs.x_min, fs.x_max, 101): row = [x] proc = evozoo.DistinguishedCornerPairHypercube_d_1(3) X = np.array([x]) distn = proc.get_distn(X) Q = proc.get_rate_matrix(X) info = f_info(Q, distn, fs.t) row.append(info) arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): M, R = get_input_matrices(fs) # create the R table string and scripts headers = [ 't', 'mi.true.mut', 'mi.true.mutsel', 'mi.analog.mut', 'mi.analog.mutsel' ] npoints = 100 t_low = 0.0 t_high = 5.0 t_incr = (t_high - t_low) / (npoints - 1) t_values = [t_low + t_incr * i for i in range(npoints)] # get the data for the R table arr = [] for t in t_values: mi_mut = ctmcmi.get_mutual_information(M, t) mi_mutsel = ctmcmi.get_mutual_information(R, t) mi_analog_mut = ctmcmi.get_ll_ratio_wrong(M, t) mi_analog_mutsel = ctmcmi.get_ll_ratio_wrong(R, t) row = [t, mi_mut, mi_mutsel, mi_analog_mut, mi_analog_mutsel] arr.append(row) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): M, R = get_input_matrices(fs) # create the R table string and scripts headers = [ 't', 'mi.true.mut', 'mi.true.mutsel', 'mi.analog.mut', 'mi.analog.mutsel'] npoints = 100 t_low = 0.0 t_high = 5.0 t_incr = (t_high - t_low) / (npoints - 1) t_values = [t_low + t_incr*i for i in range(npoints)] # get the data for the R table arr = [] for t in t_values: mi_mut = ctmcmi.get_mutual_information(M, t) mi_mutsel = ctmcmi.get_mutual_information(R, t) mi_analog_mut = ctmcmi.get_ll_ratio_wrong(M, t) mi_analog_mutsel = ctmcmi.get_ll_ratio_wrong(R, t) row = [t, mi_mut, mi_mutsel, mi_analog_mut, mi_analog_mutsel] arr.append(row) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def main(args): # set up the logger f = logging.getLogger('toplevel.logger') h = logging.StreamHandler() h.setFormatter(logging.Formatter('%(message)s %(asctime)s')) f.addHandler(h) if args.verbose: f.setLevel(logging.DEBUG) else: f.setLevel(logging.WARNING) f.info('(local) permute columns of the alignment') header_seq_pairs = beasttut.get_456_col_permuted_header_seq_pairs() f.info('(local) run BEAST serially locally and build the R stuff') table_string, scripts = get_table_string_and_scripts( g_start_stop_pairs, args.nsamples, header_seq_pairs) f.info('(local) create the composite R script') out = StringIO() print >> out, 'library(ggplot2)' print >> out, 'par(mfrow=c(3,1))' for script in scripts: print >> out, script comboscript = out.getvalue() f.info('(local) run R to create the pdf') device_name = Form.g_imageformat_to_r_function['pdf'] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name, keep_intermediate=True) if retcode: raise RUtil.RError(r_err) f.info('(local) write the .pdf file') with open(args.outfile, 'wb') as fout: fout.write(image_data) f.info('(local) return from toplevel')
def get_response_content(fs): f_info = divtime.get_fisher_info_known_distn_fast requested_triples = [] for triple in g_process_triples: name, desc, zoo_obj = triple if getattr(fs, name): requested_triples.append(triple) if not requested_triples: raise ValueError('nothing to plot') # define the R table headers r_names = [a.replace('_', '.') for a, b, c in requested_triples] headers = ['t'] + r_names # Spend a lot of time doing the optimizations # to construct the points for the R table. arr = [] for t in cbreaker.throttled(progrid.gen_binary(fs.start_time, fs.stop_time), nseconds=5, ncount=200): row = [t] for python_name, desc, zoo_class in requested_triples: zoo_obj = zoo_class(fs.d) df = zoo_obj.get_df() opt_dep = OptDep(zoo_obj, t, f_info) if df: X0 = np.random.randn(df) xopt = scipy.optimize.fmin(opt_dep, X0, maxiter=10000, maxfun=10000) # I would like to use scipy.optimize.minimize # except that this requires a newer version of # scipy than is packaged for ubuntu right now. # fmin_bfgs seems to have problems sometimes # either hanging or maxiter=10K is too big. """ xopt = scipy.optimize.fmin_bfgs(opt_dep, X0, gtol=1e-8, maxiter=10000) """ else: xopt = np.array([]) info_value = -opt_dep(xopt) row.append(info_value) arr.append(row) arr.sort() npoints = len(arr) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # precompute some transition matrices P_drift_selection = pgmsinglesite.create_drift_selection_transition_matrix( fs.npop, fs.selection_ratio) MatrixUtil.assert_transition_matrix(P_drift_selection) P_mutation = pgmsinglesite.create_mutation_transition_matrix( fs.npop, fs.mutation_ab, fs.mutation_ba) MatrixUtil.assert_transition_matrix(P_mutation) # define the R table headers headers = [ 'generation', 'number.of.mutants', 'probability', 'log.prob', ] # compute the transition matrix P = np.dot(P_drift_selection, P_mutation) # Compute the endpoint conditional probabilities for various states # along the unobserved path. nstates = fs.npop + 1 M = np.zeros((nstates, fs.ngenerations)) M[fs.nmutants_initial, 0] = 1.0 M[fs.nmutants_final, fs.ngenerations-1] = 1.0 for i in range(fs.ngenerations-2): A_exponent = i + 1 B_exponent = fs.ngenerations - 1 - A_exponent A = np.linalg.matrix_power(P, A_exponent) B = np.linalg.matrix_power(P, B_exponent) weights = np.zeros(nstates) for k in range(nstates): weights[k] = A[fs.nmutants_initial, k] * B[k, fs.nmutants_final] weights /= np.sum(weights) for k, p in enumerate(weights): M[k, i+1] = p arr = [] for g in range(fs.ngenerations): for k in range(nstates): p = M[k, g] if p: logp = math.log(p) else: logp = float('-inf') row = [g, k, p, logp] arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # legend labels label_a = 'N=%d mu=%f' % (fs.nstates_a, fs.mu_a) label_b = 'N=%d mu=%f' % (fs.nstates_b, fs.mu_b) arr, headers = make_table(fs) # compute the max value ymax = math.log(max(fs.nstates_a, fs.nstates_b)) nfifths = int(math.floor(ymax * 5.0)) + 1 ylim = RUtil.mk_call_str('c', 0, 0.2 * nfifths) # write the R script body out = StringIO() print >> out, RUtil.mk_call_str( 'plot', 'my.table$t', 'my.table$alpha', type='"n"', ylim=ylim, xlab='"time"', ylab='"information"', main='"comparison of an information criterion for two processes"', ) # draw some horizontal lines for i in range(nfifths+1): print >> out, RUtil.mk_call_str( 'abline', h=0.2*i, col='"lightgray"', lty='"dotted"') colors = ('darkblue', 'darkred') for c, header in zip(colors, headers[1:]): print >> out, RUtil.mk_call_str( 'lines', 'my.table$t', 'my.table$%s' % header, col='"%s"' % c, ) legend_names = (label_a, label_b) legend_name_str = 'c(' + ', '.join('"%s"' % s for s in legend_names) + ')' legend_col_str = 'c(' + ', '.join('"%s"' % s for s in colors) + ')' legend_lty_str = 'c(' + ', '.join('1' for s in colors) + ')' print >> out, RUtil.mk_call_str( 'legend', '"%s"' % fs.legend_placement, legend_name_str, col=legend_col_str, lty=legend_lty_str, ) script_body = out.getvalue() # create the R plot image table_string = RUtil.get_table_string(arr, headers) device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script_body, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): distn_modes = [x for x in g_ordered_modes if x in fs.distribution] if not distn_modes: raise ValueError('no distribution mode was specified') colors = [g_mode_to_color[m] for m in distn_modes] arr, headers = make_table(fs, distn_modes) distn_headers = headers[1:] # Get the largest value in the array, # skipping the first column. arrmax = np.max(arr[:, 1:]) # write the R script body out = StringIO() ylim = RUtil.mk_call_str('c', 0, arrmax + 0.1) sel_str = { BALANCED: 'balanced', HALPERN_BRUNO: 'Halpern-Bruno', }[fs.selection] print >> out, RUtil.mk_call_str( 'plot', 'my.table$t', 'my.table$%s' % distn_headers[0], type='"n"', ylim=ylim, xlab='""', ylab='"relaxation time"', main='"Effect of selection (%s) on relaxation time for %d states"' % (sel_str, fs.nstates), ) for c, header in zip(colors, distn_headers): print >> out, RUtil.mk_call_str( 'lines', 'my.table$t', 'my.table$%s' % header, col='"%s"' % c, ) mode_names = [s.replace('_', ' ') for s in distn_modes] legend_name_str = 'c(' + ', '.join('"%s"' % s for s in mode_names) + ')' legend_col_str = 'c(' + ', '.join('"%s"' % s for s in colors) + ')' legend_lty_str = 'c(' + ', '.join(['1'] * len(distn_modes)) + ')' print >> out, RUtil.mk_call_str( 'legend', '"%s"' % fs.legend_placement, legend_name_str, col=legend_col_str, lty=legend_lty_str, ) script_body = out.getvalue() # create the R plot image table_string = RUtil.get_table_string(arr, headers) device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script_body, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): f_info = divtime.get_fisher_info_known_distn_fast requested_triples = [] for triple in g_process_triples: name, desc, zoo_obj = triple if getattr(fs, name): requested_triples.append(triple) if not requested_triples: raise ValueError('nothing to plot') # define the R table headers r_names = [a.replace('_', '.') for a, b, c in requested_triples] headers = ['t'] + r_names # Spend a lot of time doing the optimizations # to construct the points for the R table. arr = [] for t in cbreaker.throttled( progrid.gen_binary(fs.start_time, fs.stop_time), nseconds=5, ncount=200): row = [t] for python_name, desc, zoo_class in requested_triples: zoo_obj = zoo_class(fs.d) df = zoo_obj.get_df() opt_dep = OptDep(zoo_obj, t, f_info) if df: X0 = np.random.randn(df) xopt = scipy.optimize.fmin( opt_dep, X0, maxiter=10000, maxfun=10000) # I would like to use scipy.optimize.minimize # except that this requires a newer version of # scipy than is packaged for ubuntu right now. # fmin_bfgs seems to have problems sometimes # either hanging or maxiter=10K is too big. """ xopt = scipy.optimize.fmin_bfgs(opt_dep, X0, gtol=1e-8, maxiter=10000) """ else: xopt = np.array([]) info_value = -opt_dep(xopt) row.append(info_value) arr.append(row) arr.sort() npoints = len(arr) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # legend labels label_a = 'N=%d mu=%f' % (fs.nstates_a, fs.mu_a) label_b = 'N=%d mu=%f' % (fs.nstates_b, fs.mu_b) arr, headers = make_table(fs) # compute the max value ymax = math.log(max(fs.nstates_a, fs.nstates_b)) nfifths = int(math.floor(ymax * 5.0)) + 1 ylim = RUtil.mk_call_str('c', 0, 0.2 * nfifths) # write the R script body out = StringIO() print >> out, RUtil.mk_call_str( 'plot', 'my.table$t', 'my.table$alpha', type='"n"', ylim=ylim, xlab='"time"', ylab='"information"', main='"comparison of an information criterion for two processes"', ) # draw some horizontal lines for i in range(nfifths + 1): print >> out, RUtil.mk_call_str('abline', h=0.2 * i, col='"lightgray"', lty='"dotted"') colors = ('darkblue', 'darkred') for c, header in zip(colors, headers[1:]): print >> out, RUtil.mk_call_str( 'lines', 'my.table$t', 'my.table$%s' % header, col='"%s"' % c, ) legend_names = (label_a, label_b) legend_name_str = 'c(' + ', '.join('"%s"' % s for s in legend_names) + ')' legend_col_str = 'c(' + ', '.join('"%s"' % s for s in colors) + ')' legend_lty_str = 'c(' + ', '.join('1' for s in colors) + ')' print >> out, RUtil.mk_call_str( 'legend', '"%s"' % fs.legend_placement, legend_name_str, col=legend_col_str, lty=legend_lty_str, ) script_body = out.getvalue() # create the R plot image table_string = RUtil.get_table_string(arr, headers) device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script_body, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): distn_modes = [x for x in g_ordered_modes if x in fs.distribution] if not distn_modes: raise ValueError('no distribution mode was specified') colors = [g_mode_to_color[m] for m in distn_modes] arr, headers = make_table(fs, distn_modes) distn_headers = headers[1:] # Get the largest value in the array, # skipping the first column. arrmax = np.max(arr[:,1:]) # write the R script body out = StringIO() ylim = RUtil.mk_call_str('c', 0, arrmax + 0.1) sel_str = { BALANCED : 'balanced', HALPERN_BRUNO : 'Halpern-Bruno', }[fs.selection] print >> out, RUtil.mk_call_str( 'plot', 'my.table$t', 'my.table$%s' % distn_headers[0], type='"n"', ylim=ylim, xlab='""', ylab='"relaxation time"', main='"Effect of selection (%s) on relaxation time for %d states"' % (sel_str, fs.nstates), ) for c, header in zip(colors, distn_headers): print >> out, RUtil.mk_call_str( 'lines', 'my.table$t', 'my.table$%s' % header, col='"%s"' % c, ) mode_names = [s.replace('_', ' ') for s in distn_modes] legend_name_str = 'c(' + ', '.join('"%s"' % s for s in mode_names) + ')' legend_col_str = 'c(' + ', '.join('"%s"' % s for s in colors) + ')' legend_lty_str = 'c(' + ', '.join(['1']*len(distn_modes)) + ')' print >> out, RUtil.mk_call_str( 'legend', '"%s"' % fs.legend_placement, legend_name_str, col=legend_col_str, lty=legend_lty_str, ) script_body = out.getvalue() # create the R plot image table_string = RUtil.get_table_string(arr, headers) device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script_body, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_latex_documentbody(fs): """ This is obsolete. """ out = StringIO() table_string, scripts = get_table_string_and_scripts(fs) for script in scripts: retcode, r_out, r_err, tikz_code = RUtil.run_plotter(table_string, script, "tikz", width=5, height=5) if retcode: raise RUtil.RError(r_err) print >> out, tikz_code return out.getvalue()
def main(args): # check args if gmpy.popcount(args.ntiles) != 1: raise ValueError('the number of tiles should be a power of two') # set up the logger f = logging.getLogger('toplevel.logger') h = logging.StreamHandler() h.setFormatter(logging.Formatter('%(message)s %(asctime)s')) f.addHandler(h) if args.verbose: f.setLevel(logging.DEBUG) else: f.setLevel(logging.WARNING) f.info('(local) read the xml contents') if args.infile is None: xmldata = sys.stdin.read() else: with open(args.infile) as fin: xmldata = fin.read() f.info('(local) modify the log filename and chain length xml contents') xmldata = beast.set_nsamples(xmldata, args.mcmc_id, args.nsamples) xmldata = beast.set_log_filename(xmldata, args.log_id, args.log_filename) xmldata = beast.set_log_logevery(xmldata, args.log_id, args.log_logevery) f.info('(local) define the hierarchically nested intervals') start_stop_pairs = tuple( (a + 1, b) for a, b in beasttiling.gen_hierarchical_slices( args.tile_width, args.offset, args.tile_width * args.ntiles)) f.info('(local) run BEAST serially locally and build the R stuff') table_string, full_table_string, scripts = get_table_strings_and_scripts( xmldata, args.alignment_id, start_stop_pairs, args.nsamples) if args.full_table_out: f.info('(local) create the verbose R table') with open(args.full_table_out, 'w') as fout: fout.write(full_table_string) f.info('(local) create the composite R script') out = StringIO() print >> out, 'library(ggplot2)' print >> out, 'par(mfrow=c(3,1))' for script in scripts: print >> out, script comboscript = out.getvalue() f.info('(local) run R to create the pdf') device_name = Form.g_imageformat_to_r_function['pdf'] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name, keep_intermediate=True) if retcode: raise RUtil.RError(r_err) f.info('(local) write the .pdf file') with open(args.outfile, 'wb') as fout: fout.write(image_data) f.info('(local) return from toplevel')
def main(args): # check args if gmpy.popcount(args.ntiles) != 1: raise ValueError('the number of tiles should be a power of two') # set up the logger f = logging.getLogger('toplevel.logger') h = logging.StreamHandler() h.setFormatter(logging.Formatter('%(message)s %(asctime)s')) f.addHandler(h) if args.verbose: f.setLevel(logging.DEBUG) else: f.setLevel(logging.WARNING) f.info('(local) read the xml contents') if args.infile is None: xmldata = sys.stdin.read() else: with open(args.infile) as fin: xmldata = fin.read() f.info('(local) modify the log filename and chain length xml contents') xmldata = beast.set_nsamples(xmldata, args.mcmc_id, args.nsamples) xmldata = beast.set_log_filename(xmldata, args.log_id, args.log_filename) xmldata = beast.set_log_logevery(xmldata, args.log_id, args.log_logevery) f.info('(local) define the hierarchically nested intervals') start_stop_pairs = tuple( (a+1,b) for a, b in beasttiling.gen_hierarchical_slices( args.tile_width, args.offset, args.tile_width * args.ntiles)) f.info('(local) run BEAST serially locally and build the R stuff') table_string, full_table_string, scripts = get_table_strings_and_scripts( xmldata, args.alignment_id, start_stop_pairs, args.nsamples) if args.full_table_out: f.info('(local) create the verbose R table') with open(args.full_table_out, 'w') as fout: fout.write(full_table_string) f.info('(local) create the composite R script') out = StringIO() print >> out, 'library(ggplot2)' print >> out, 'par(mfrow=c(3,1))' for script in scripts: print >> out, script comboscript = out.getvalue() f.info('(local) run R to create the pdf') device_name = Form.g_imageformat_to_r_function['pdf'] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name, keep_intermediate=True) if retcode: raise RUtil.RError(r_err) f.info('(local) write the .pdf file') with open(args.outfile, 'wb') as fout: fout.write(image_data) f.info('(local) return from toplevel')
def get_latex_documentbody(fs): """ This is obsolete. """ out = StringIO() table_string, scripts = get_table_string_and_scripts(fs) for script in scripts: retcode, r_out, r_err, tikz_code = RUtil.run_plotter( table_string, script, 'tikz', width=5, height=5) if retcode: raise RUtil.RError(r_err) print >> out, tikz_code return out.getvalue()
def get_response_content(fs): # get the table string and scripts table_string, scripts = get_table_string_and_scripts(fs) # create a comboscript out = StringIO() print >> out, "par(mfrow=c(3,1))" for script in scripts: print >> out, script comboscript = out.getvalue() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter(table_string, comboscript, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # get the table string and scripts table_string, scripts = get_table_string_and_scripts(fs) # create a comboscript out = StringIO() print >> out, 'par(mfrow=c(3,1))' for script in scripts: print >> out, script comboscript = out.getvalue() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): f_info = ctmcmi.get_mutual_info_known_distn requested_triples = [] for triple in g_process_triples: name, desc, zoo_obj = triple if getattr(fs, name): requested_triples.append(triple) if not requested_triples: raise ValueError('nothing to plot') # define the R table headers headers = ['t'] if fs.log4: headers.append('log.4') if fs.log3: headers.append('log.3') r_names = [a.replace('_', '.') for a, b, c in requested_triples] headers.extend(r_names) # Spend a lot of time doing the optimizations # to construct the points for the R table. times = np.linspace(fs.start_time, fs.stop_time, 101) arr = [] for t in times: row = [t] if fs.log4: row.append(math.log(4)) if fs.log3: row.append(math.log(3)) for python_name, desc, zoo_obj in requested_triples: X = np.array([]) info_value = f_info( zoo_obj.get_rate_matrix(X), zoo_obj.get_distn(X), t) row.append(info_value) arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): Q_mut, Q_sels = get_qmut_qsels(fs) # compute the statistics ER_ratios, NSR_ratios, ER_NSR_ratios = get_statistic_ratios(Q_mut, Q_sels) M = zip(*(ER_ratios, NSR_ratios, ER_NSR_ratios)) column_headers = ('ER.ratio', 'NSR.ratio', 'ER.times.NSR.ratio') table_string = RUtil.get_table_string(M, column_headers) nsels = len(Q_sels) # get the R script comboscript = get_r_comboscript(nsels, column_headers) # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): f_info = ctmcmi.get_mutual_info_known_distn requested_triples = [] for triple in g_process_triples: name, desc, zoo_obj = triple if getattr(fs, name): requested_triples.append(triple) if not requested_triples: raise ValueError('nothing to plot') # define the R table headers headers = ['t'] if fs.log4: headers.append('log.4') if fs.log3: headers.append('log.3') r_names = [a.replace('_', '.') for a, b, c in requested_triples] headers.extend(r_names) # Spend a lot of time doing the optimizations # to construct the points for the R table. times = np.linspace(fs.start_time, fs.stop_time, 101) arr = [] for t in times: row = [t] if fs.log4: row.append(math.log(4)) if fs.log3: row.append(math.log(3)) for python_name, desc, zoo_obj in requested_triples: X = np.array([]) info_value = f_info(zoo_obj.get_rate_matrix(X), zoo_obj.get_distn(X), t) row.append(info_value) arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def main(args): # set up the logger f = logging.getLogger('toplevel.logger') h = logging.StreamHandler() h.setFormatter(logging.Formatter('%(message)s %(asctime)s')) f.addHandler(h) if args.verbose: f.setLevel(logging.DEBUG) else: f.setLevel(logging.WARNING) if args.run == 'hpc': r = RemoteBeast(g_start_stop_pairs, args.nsamples) f.info('run BEAST remotely') r.run(verbose=args.verbose) f.info('(local) build the R table string and scripts') table_string, scripts = beasttut.get_table_string_and_scripts_from_logs( g_start_stop_pairs, r.local_log_paths, args.nsamples) elif args.run == 'serial': f.info('(local) run BEAST serially locally and build the R stuff') table_string, scripts = beasttut.get_table_string_and_scripts( g_start_stop_pairs, args.nsamples) elif args.run == 'parallel': f.info('(local) run BEAST locally in parallel and build the R stuff') table_string, scripts = beasttut.get_table_string_and_scripts_par( g_start_stop_pairs, args.nsamples) else: raise ValueError('invalid execution model') f.info('(local) create the composite R script') out = StringIO() print >> out, 'library(ggplot2)' print >> out, 'par(mfrow=c(3,1))' for script in scripts: print >> out, script comboscript = out.getvalue() f.info('(local) run R to create the pdf') device_name = Form.g_imageformat_to_r_function['pdf'] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name, keep_intermediate=True) if retcode: raise RUtil.RError(r_err) f.info('(local) write the .pdf file') with open(args.outfile, 'wb') as fout: fout.write(image_data) f.info('(local) return from toplevel')
def main(args): # set up the logger f = logging.getLogger("toplevel.logger") h = logging.StreamHandler() h.setFormatter(logging.Formatter("%(message)s %(asctime)s")) f.addHandler(h) if args.verbose: f.setLevel(logging.DEBUG) else: f.setLevel(logging.WARNING) if args.run == "hpc": adapter = Adapter(g_start_stop_pairs, args.nsamples) r = hpcutil.RemoteBrc(adapter) f.info("run BEAST remotely") r.run(verbose=args.verbose) f.info("(local) build the R table string and scripts") table_string, scripts = beasttut.get_table_string_and_scripts_from_logs( g_start_stop_pairs, adapter.local_log_paths, args.nsamples ) elif args.run == "serial": f.info("(local) run BEAST serially locally and build the R stuff") table_string, scripts = beasttut.get_table_string_and_scripts(g_start_stop_pairs, args.nsamples) elif args.run == "parallel": f.info("(local) run BEAST locally in parallel and build the R stuff") table_string, scripts = beasttut.get_table_string_and_scripts_par(g_start_stop_pairs, args.nsamples) else: raise ValueError("invalid execution model") f.info("(local) create the composite R script") out = StringIO() print >> out, "library(ggplot2)" print >> out, "par(mfrow=c(3,1))" for script in scripts: print >> out, script comboscript = out.getvalue() f.info("(local) run R to create the pdf") device_name = Form.g_imageformat_to_r_function["pdf"] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, comboscript, device_name, keep_intermediate=True ) if retcode: raise RUtil.RError(r_err) f.info("(local) write the .pdf file") with open(args.outfile, "wb") as fout: fout.write(image_data) f.info("(local) return from toplevel")
def get_response_content(fs): # create the R table string and scripts headers = [ 'entropy', 'analog'] distributions = [] nstates = 4 npoints = 5000 arr = [] best_pair = None for i in range(npoints): weights = [random.expovariate(1) for j in range(nstates)] total = sum(weights) distn = [x / total for x in weights] entropy = -sum(p * math.log(p) for p in distn) sum_squares = sum(p*p for p in distn) sum_cubes = sum(p*p*p for p in distn) analog = math.log(sum_squares / sum_cubes) row = [entropy, analog] arr.append(row) dist = (entropy - 1.0)**2 + (analog - 0.4)**2 if (best_pair is None) or (dist < best_pair[0]): best_pair = (dist, distn) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script out = StringIO() title = ', '.join(str(x) for x in best_pair[1]) print >> out, RUtil.mk_call_str( 'plot', 'my.table$entropy', 'my.table$analog', pch='20', main='"%s"' % title) script = out.getvalue() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): distn_modes = [x for x in g_ordered_modes if x in fs.distribution] if not distn_modes: raise ValueError("no distribution mode was specified") colors = [g_mode_to_color[m] for m in distn_modes] arr, headers = make_table(fs, distn_modes) distn_headers = headers[1:] # Get the largest value in the array, # skipping the first column. arrmax = np.max(arr[:, 1:]) # write the R script body out = StringIO() ylim = RUtil.mk_call_str("c", 0, arrmax + 0.1) sel_str = {BALANCED: "f=1/2", HALPERN_BRUNO: "Halpern-Bruno"}[fs.selection] print >> out, RUtil.mk_call_str( "plot", "my.table$t", "my.table$%s" % distn_headers[0], type='"n"', ylim=ylim, xlab='"time"', ylab='"expected log L-ratio"', main='"Effect of selection (%s) on log L-ratio for %d states"' % (sel_str, fs.nstates), ) for c, header in zip(colors, distn_headers): print >> out, RUtil.mk_call_str("lines", "my.table$t", "my.table$%s" % header, col='"%s"' % c) mode_names = [s.replace("_", " ") for s in distn_modes] legend_name_str = "c(" + ", ".join('"%s"' % s for s in mode_names) + ")" legend_col_str = "c(" + ", ".join('"%s"' % s for s in colors) + ")" legend_lty_str = "c(" + ", ".join(["1"] * len(distn_modes)) + ")" print >> out, RUtil.mk_call_str( "legend", '"%s"' % fs.legend_placement, legend_name_str, col=legend_col_str, lty=legend_lty_str ) script_body = out.getvalue() # create the R plot image table_string = RUtil.get_table_string(arr, headers) device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter(table_string, script_body, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # create the R table string and scripts headers = ['entropy', 'analog'] distributions = [] nstates = 4 npoints = 5000 arr = [] best_pair = None for i in range(npoints): weights = [random.expovariate(1) for j in range(nstates)] total = sum(weights) distn = [x / total for x in weights] entropy = -sum(p * math.log(p) for p in distn) sum_squares = sum(p * p for p in distn) sum_cubes = sum(p * p * p for p in distn) analog = math.log(sum_squares / sum_cubes) row = [entropy, analog] arr.append(row) dist = (entropy - 1.0)**2 + (analog - 0.4)**2 if (best_pair is None) or (dist < best_pair[0]): best_pair = (dist, distn) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script out = StringIO() title = ', '.join(str(x) for x in best_pair[1]) print >> out, RUtil.mk_call_str('plot', 'my.table$entropy', 'my.table$analog', pch='20', main='"%s"' % title) script = out.getvalue() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # create the R table string and scripts headers = [ 'z', 'c.neg2.0', 'c.neg0.5', 'c.0.5', 'c.2.0', #'c.a', #'c.b', #'c.c', #'c.d', ] #C = numpy.array([-0.5, -0.2, 0.2, 0.5], dtype=float) #C = numpy.array([-1.0, -0.4, 0.4, 1.0], dtype=float) C = numpy.array([-2.0, -0.5, 0.5, 2.0], dtype=float) Z = numpy.linspace(-5, 5, 101) # get the data for the R table arr = [] for z in Z: row = [z] for c in C: rate = 1.0 / kimrecessive.denom_piecewise(c, z*numpy.sign(c)) row.append(rate) arr.append(row) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # create the R table string and scripts headers = [ 'z', 'c.neg2.0', 'c.neg0.5', 'c.0.5', 'c.2.0', #'c.a', #'c.b', #'c.c', #'c.d', ] #C = numpy.array([-0.5, -0.2, 0.2, 0.5], dtype=float) #C = numpy.array([-1.0, -0.4, 0.4, 1.0], dtype=float) C = numpy.array([-2.0, -0.5, 0.5, 2.0], dtype=float) Z = numpy.linspace(-5, 5, 101) # get the data for the R table arr = [] for z in Z: row = [z] for c in C: rate = 1.0 / kimrecessive.denom_piecewise(c, z * numpy.sign(c)) row.append(rate) arr.append(row) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # transform the arguments according to the diffusion approximation mutation_ab = (fs.pop * fs.mutation_ab) / fs.pop_gran mutation_ba = (fs.pop * fs.mutation_ba) / fs.pop_gran if mutation_ab > 1 or mutation_ba > 1: raise Exception('the mutation probability is not small enough ' 'for the diffusion approximation to be meaningful') selection_ratio = 1 + (fs.pop * fs.additive_selection) / fs.pop_gran npop = fs.pop_gran ngenerations = fs.ngenerations nmutants_initial = int(fs.initial_freq * fs.pop_gran) nmutants_final = int(fs.final_freq * fs.pop_gran) # precompute some transition matrices P_drift_selection = pgmsinglesite.create_drift_selection_transition_matrix( npop, selection_ratio) MatrixUtil.assert_transition_matrix(P_drift_selection) P_mutation = pgmsinglesite.create_mutation_transition_matrix( npop, mutation_ab, mutation_ba) MatrixUtil.assert_transition_matrix(P_mutation) # define the R table headers headers = [ 'generation', 'allele.frequency', 'probability', 'log.density', ] # compute the transition matrix P = np.dot(P_drift_selection, P_mutation) # Compute the endpoint conditional probabilities for various states # along the unobserved path. nstates = npop + 1 M = np.zeros((nstates, ngenerations)) M[nmutants_initial, 0] = 1.0 M[nmutants_final, ngenerations - 1] = 1.0 for i in range(ngenerations - 2): A_exponent = i + 1 B_exponent = ngenerations - 1 - A_exponent A = np.linalg.matrix_power(P, A_exponent) B = np.linalg.matrix_power(P, B_exponent) weights = np.zeros(nstates) for k in range(nstates): weights[k] = A[nmutants_initial, k] * B[k, nmutants_final] weights /= np.sum(weights) for k, p in enumerate(weights): M[k, i + 1] = p arr = [] for g in range(ngenerations): for k in range(nstates): p = M[k, g] allele_frequency = k / float(npop) # Finer gridding needs larger scaling for the density # because each interval has a smaller support. density = p * nstates if density: log_density = math.log(density) else: log_density = float('-inf') row = [g, allele_frequency, p, log_density] arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot(nstates) # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): # transform the arguments according to the diffusion approximation mutation_ab = (fs.pop * fs.mutation_ab) / fs.pop_gran mutation_ba = (fs.pop * fs.mutation_ba) / fs.pop_gran if mutation_ab > 1 or mutation_ba > 1: raise Exception( 'the mutation probability is not small enough ' 'for the diffusion approximation to be meaningful') selection_ratio = 1 + (fs.pop * fs.additive_selection) / fs.pop_gran npop = fs.pop_gran ngenerations = fs.ngenerations nmutants_initial = int(fs.initial_freq * fs.pop_gran) nmutants_final = int(fs.final_freq * fs.pop_gran) # precompute some transition matrices P_drift_selection = pgmsinglesite.create_drift_selection_transition_matrix( npop, selection_ratio) MatrixUtil.assert_transition_matrix(P_drift_selection) P_mutation = pgmsinglesite.create_mutation_transition_matrix( npop, mutation_ab, mutation_ba) MatrixUtil.assert_transition_matrix(P_mutation) # define the R table headers headers = [ 'generation', 'allele.frequency', 'probability', 'log.density', ] # compute the transition matrix P = np.dot(P_drift_selection, P_mutation) # Compute the endpoint conditional probabilities for various states # along the unobserved path. nstates = npop + 1 M = np.zeros((nstates, ngenerations)) M[nmutants_initial, 0] = 1.0 M[nmutants_final, ngenerations-1] = 1.0 for i in range(ngenerations-2): A_exponent = i + 1 B_exponent = ngenerations - 1 - A_exponent A = np.linalg.matrix_power(P, A_exponent) B = np.linalg.matrix_power(P, B_exponent) weights = np.zeros(nstates) for k in range(nstates): weights[k] = A[nmutants_initial, k] * B[k, nmutants_final] weights /= np.sum(weights) for k, p in enumerate(weights): M[k, i+1] = p arr = [] for g in range(ngenerations): for k in range(nstates): p = M[k, g] allele_frequency = k / float(npop) # Finer gridding needs larger scaling for the density # because each interval has a smaller support. density = p * nstates if density: log_density = math.log(density) else: log_density = float('-inf') row = [g, allele_frequency, p, log_density] arr.append(row) # create the R table string and scripts # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot(nstates) # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): M = get_input_matrix(fs) nstates = len(M) nsites = fs.nsites if nstates**nsites > 16: raise ValueError('the site dependent rate matrix is too big') # precompute some stuff M_site_indep = get_site_independent_process(M, nsites) v = mrate.R_to_distn(M) v_site_indep = get_site_independent_distn(v, nsites) if fs.info_fis: f_info = divtime.get_fisher_info_known_distn_fast elif fs.info_mut: f_info = ctmcmi.get_mutual_info_known_distn else: raise ValueError('no info type specified') f_selection = mrate.to_gtr_hb_known_energies # Spend a lot of time doing the optimizations # to construct the points for the R table. arr = [] for t in cbreaker.throttled(progrid.gen_binary(fs.start_time, fs.stop_time), nseconds=4, ncount=100): row = [t] # get the site-dependent mutation selection balance information if fs.dep_balance: dep_balance = OptDep(M_site_indep, v_site_indep, t, f_info, f_selection) X0 = np.random.randn(nstates**nsites - 1) xopt = scipy.optimize.fmin(dep_balance, X0) max_dep_balance_info = -dep_balance(xopt) row.append(max_dep_balance_info) # for debug Q_bal, v_bal = dep_balance.get_process(xopt) print 'dependent balance:' print max_dep_balance_info print v_bal print Q_bal print # get the site-independent mutation selection balance information if fs.indep_balance: indep_balance = OptIndep(M, v, nsites, t, f_info, f_selection) X0 = np.random.randn(nstates - 1) xopt = scipy.optimize.fmin(indep_balance, X0) max_indep_balance_info = -indep_balance(xopt) row.append(max_indep_balance_info) # for debug Q_bal, v_bal = indep_balance.get_process(xopt) print 'independent balance:' print max_indep_balance_info print v_bal print Q_bal print # get the site-independent mutation process information if fs.indep_mutation: indep_mut_info = f_info(M_site_indep, v_site_indep, t) row.append(indep_mut_info) # add the data row to the table arr.append(row) arr.sort() npoints = len(arr) # create the R table string and scripts headers = ['t'] if fs.dep_balance: headers.append('max.site.dep.balance') if fs.indep_balance: headers.append('max.site.indep.balance') if fs.indep_mutation: headers.append('site.indep.mutation') # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): M = get_input_matrix(fs) nstates = len(M) nsites = fs.nsites if nstates ** nsites > 16: raise ValueError('the site dependent rate matrix is too big') # precompute some stuff M_site_indep = get_site_independent_process(M, nsites) v = mrate.R_to_distn(M) v_site_indep = get_site_independent_distn(v, nsites) if fs.info_fis: f_info = divtime.get_fisher_info_known_distn_fast elif fs.info_mut: f_info = ctmcmi.get_mutual_info_known_distn else: raise ValueError('no info type specified') f_selection = mrate.to_gtr_hb_known_energies # Spend a lot of time doing the optimizations # to construct the points for the R table. arr = [] for t in cbreaker.throttled( progrid.gen_binary(fs.start_time, fs.stop_time), nseconds=4, ncount=100): row = [t] # get the site-dependent mutation selection balance information if fs.dep_balance: dep_balance = OptDep( M_site_indep, v_site_indep, t, f_info, f_selection) X0 = np.random.randn(nstates ** nsites - 1) xopt = scipy.optimize.fmin(dep_balance, X0) max_dep_balance_info = -dep_balance(xopt) row.append(max_dep_balance_info) # for debug Q_bal, v_bal = dep_balance.get_process(xopt) print 'dependent balance:' print max_dep_balance_info print v_bal print Q_bal print # get the site-independent mutation selection balance information if fs.indep_balance: indep_balance = OptIndep( M, v, nsites, t, f_info, f_selection) X0 = np.random.randn(nstates-1) xopt = scipy.optimize.fmin(indep_balance, X0) max_indep_balance_info = -indep_balance(xopt) row.append(max_indep_balance_info) # for debug Q_bal, v_bal = indep_balance.get_process(xopt) print 'independent balance:' print max_indep_balance_info print v_bal print Q_bal print # get the site-independent mutation process information if fs.indep_mutation: indep_mut_info = f_info(M_site_indep, v_site_indep, t) row.append(indep_mut_info) # add the data row to the table arr.append(row) arr.sort() npoints = len(arr) # create the R table string and scripts headers = ['t'] if fs.dep_balance: headers.append('max.site.dep.balance') if fs.indep_balance: headers.append('max.site.indep.balance') if fs.indep_mutation: headers.append('site.indep.mutation') # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data
def get_response_content(fs): M = get_input_matrix(fs) # create the R table string and scripts headers = ['t'] if fs.show_entropy: headers.append('ub.entropy') headers.extend([ 'ub.jc.spectral', 'ub.f81.spectral', 'mutual.information', 'lb.2.state.spectral', 'lb.2.state', 'lb.f81', ]) npoints = 100 t_low = fs.start_time t_high = fs.stop_time t_incr = (t_high - t_low) / (npoints - 1) t_values = [t_low + t_incr*i for i in range(npoints)] # define some extra stuff v = mrate.R_to_distn(M) entropy = -np.dot(v, np.log(v)) n = len(M) gap = sorted(abs(x) for x in np.linalg.eigvals(M))[1] print 'stationary distn:', v print 'entropy:', entropy print 'spectral gap:', gap M_slow_jc = gap * (1.0 / n) * (np.ones((n,n)) - n*np.eye(n)) M_slow_f81 = gap * np.outer(np.ones(n), v) M_slow_f81 -= np.diag(np.sum(M_slow_f81, axis=1)) M_f81 = msimpl.get_fast_f81(M) M_2state = msimpl.get_fast_two_state_autobarrier(M) M_2state_spectral = -gap * M_2state / np.trace(M_2state) # get the data for the R table arr = [] for u in t_values: # experiment with log time #t = math.exp(u) t = u mi_slow_jc = ctmcmi.get_mutual_information(M_slow_jc, t) mi_slow_f81 = ctmcmi.get_mutual_information(M_slow_f81, t) mi_mut = ctmcmi.get_mutual_information(M, t) mi_2state_spectral = ctmcmi.get_mutual_information(M_2state_spectral, t) mi_f81 = ctmcmi.get_mutual_information(M_f81, t) mi_2state = ctmcmi.get_mutual_information(M_2state, t) row = [u] if fs.show_entropy: row.append(entropy) row.extend([mi_slow_jc, mi_slow_f81, mi_mut, mi_2state_spectral, mi_2state, mi_f81]) arr.append(row) # get the R table table_string = RUtil.get_table_string(arr, headers) # get the R script script = get_ggplot() # create the R plot image device_name = Form.g_imageformat_to_r_function[fs.imageformat] retcode, r_out, r_err, image_data = RUtil.run_plotter( table_string, script, device_name) if retcode: raise RUtil.RError(r_err) return image_data