smotif = ud.getSmotif(s1_profile, s2_profile) rdc_file, ss_seq, cathdb = ud.initData() cath_entries = ud.extractCath(smotif, cathdb) print sys.argv[1], sys.argv[2], s1_profile, s2_profile print smotif print len(cath_entries) #********************************* # Search for needles in the haystack #********************************* B0 = 18.8 TinK = 298.0 Sorder = 1.0 scal = rf.rdcScal(Sorder, B0, TinK) homologs=[] # specify homologs to exclude from calculation sort_nchi={} for domain in cath_entries: # ['5gstB02', 'GLU', '90', 'MET', '112', 'ASP', '118', 'LEU', '141'] if domain[0] in homologs: continue rdcd = ParaData(['rdc', ss_seq, rdc_file]) rdc_data = rdcd.processParaData() temp_nchi, temp_tensor = [], [] # to store tensor and control datasets for i in range(0, len(rdc_data)): # iterate through each RDC data set vector_data, data_error = rf.matchRdcToSmotif(s1_profile, s2_profile, domain, rdc_data[i]) if not data_error: # [[-0.6490001678466797, -0.3989999294281006, 0.6469993591308594], -7252794860688272.0, -6.593]] # X Y Z gm1*gm2 rdc
smotif = ud.getSmotif(sp_profile, sc_profile) print csmotif, psmotif, smotif init_data = ud.testinitData('rdc_file', 'ss_seq', 'cathdb', 'rmsd_cutoff') rdc_file, ss_seq, cathdb, rmsd_cutoff = init_data[0], init_data[1], init_data[2], init_data[3] cath_entries = ud.extractCath(smotif, cathdb) #********************************* # Search for needles in the haystack #********************************* B0 = 18.8 TinK = 298.0 Sorder = 1.0 scal = rf.rdcScal(Sorder, B0, TinK) rdcd = ParaData(['rdc', ss_seq, rdc_file]) rdc_data = rdcd.processParaData() homologs=['3c5y'] # specify homologs to exclude from calculation sort_nchi={} hit_list_dict={} import pymol pymol.pymol_argv = [ 'pymol', '-qc'] # Quiet and no GUI pymol.finish_launching() # Disable Pymol's output pymol.cmd.feedback("disable","all","actions") pymol.cmd.feedback("disable","all","results") pymol.cmd.feedback("disable","all","errors") pymol.cmd.feedback("disable","all","warnings")