def runQueryAnalysis(audioTransName, hashprintTransName, testName):

	print("[runQueryAnalysis] start analysis of:", \
		audioTransName, hashprintTransName, testName)

	testPath = os.path.join(audioTransName, testName)
	dbsPath = os.path.join(audioTransName, hashprintTransName)
	
	resultDict = dict()

	for artist in cu.listdir(os.path.join(audioTransName, hashprintTransName)):

		print("[runQueryAnalysis] start artist:", artist)

		artistResult = dict()
		hashprintDB = cu.loadHashprintDB(os.path.join(dbsPath, artist))

		for songHashprint in cu.listdir(os.path.join(testPath, artist)):

			songHashprintPath = os.path.join(testPath, artist, songHashprint)
			artistResult[songHashprint] = hp.runHashprintQuery(songHashprintPath, hashprintDB)

		resultDict[artist] = artistResult

	analysis = ra.ResultAnalyzer(resultDict, audioTransName, hashprintTransName, testName)
	analysis.saveAll()
	analysis.saveToCommonCSV()
예제 #2
0
def runTesting(used_dataset, dataset_code):
    verbose = False
    multiplier = 5
    classifiers = 4

    metric_file = "classifiers_metrics"
    analysis_file = "results"

    print("Loading...")
    time.sleep(10)

    num_instaces = sc._jsc.sc().getExecutorMemoryStatus().size() - 1
    print("Instances online: " + str(num_instaces))

    mainTime = time.time()
    tc.mainTestClassifier(destination_file=metric_file + dataset_code,
                          verbose=verbose,
                          multiplier=multiplier,
                          used_dataset=used_dataset)
    print("Test eseguiti in " + str(time.time() - mainTime) + " secondi")

    resa.ResultAnalysis(source_file=metric_file + dataset_code,
                        destination_file=analysis_file + dataset_code,
                        classifiers=classifiers)
    print("Analisi ultimate. File Results pronto")
예제 #3
0
def calculater_result(model, testdates, testys):
    ty = []
    pv =[]
    print len(testdates)
    for i in range(len(testdates)):
        pre = bit2num(model.predict(testdates[i]))
        pv.append(pre) 
        tar = bit2num(testys[i][0])
        ty.append(tar)
        print pre, tar
    print ResultAnalysis.SenAndSpe(ty, pv)
예제 #4
0
                break
            logger.info('_count = {},_max_accuray]={} '.format(earlystop._count,earlystop._max_accuray))
        #testing
        logger.info('testing model')
        del bl_cnn  # deletes the existing model
        bl_cnn = load_model(model_file)
        score, acc = bl_cnn.evaluate(X_test, y_test, batch_size=50, verbose=1, sample_weight=None)
        logger.info('max_val_acc :{}'.format(max_val_acc))
        logger.info('Test score:{}'.format( score))
        logger.info('Test accuracy: {}'.format(acc))
        total_test_acc.append(acc)
        #get predict_y
        predictions = bl_cnn.predict(X_test)
        logger.info('predictions[0:10] = {}'.format(predictions[0:10]))
        predict_y = np.ndarray.flatten(np.argmax(predictions, axis= 1 ))
        logger.info('predict_y[0:10]={}'.format(predict_y[0:10]))
        #export result
        index_word = dict([(kv[1],kv[0])for kv in tdg.word_index.items()])
        ResultAnalysis.comp_predict_lable(X = X_test,y=y_test,y_predict = predict_y,
                                          index2word=index_word,label2name={0:'negtive',1:'positive'},
                                          file_to_save='./chinese_zi_epoch_{}.txt'.format(k))

    logger.info('total_test_acc={}'.format(total_test_acc))
    logger.info('mean acc = {}'.format(sum(total_test_acc) / len(total_test_acc)))
    logger.info('max acc = {}'.format( max(total_test_acc)))     

  



예제 #5
0
print(X_test.shape[0], 'test samples')

# 转换为one_hot类型
#Y_test = np_utils.to_categorical(y_test, nb_classes)
Y_test =ones.one_hot_ten(y_test,nb_classes)
print('one-hot-test:',Y_test)

# 构建模型
model = Sequential()
model=load_model('Cnn200.h5')
result=model.predict(X_test)
print(result)
listOne=result[0:28]
#listThree=result[28:]

oneResult=analysisType.resultType(listOne)
#threeResult=analysisType.resultType(listThree)
print('oneResult=',oneResult)
#print('threeResult=',threeResult)

cutPic.cutLoginPicByPicType(oneResult)




##结果分类
# print('total=',len(result))
#
# nb_type=2   #辨识图片种类
# num=len(result)/nb_type
# count=0