def histogramStride(dataMatrix): matrixnew = dataMatrix Steparray, step = StepExtraction.stepDetectionback(matrixnew) step1 = pd.DataFrame(step) step1 = step1.iloc[:,310] step1= np.array(step1.value_counts()) plt.hist(step1) plt.show()
def MatrixforAndroid(datamatrix, elan): modifiedmatrix ,steps = StepExtraction.videosteps(datamatrix,elan) print steps print elan e,f = FeatureKonstruktion.handverkrampft(modifiedmatrix,steps[:,[0,1]]) g,h,k = FeatureKonstruktion.aufrechtgehen(modifiedmatrix,steps[:,[0,1]]) i,j =FeatureKonstruktion.Fussabrollen(modifiedmatrix,steps[:,[0,1]]) passgang = FeatureKonstruktion.Passgang(modifiedmatrix,steps[:,[0,1]]) rightpeak,leftpeak = FeatureKonstruktion.Stockaufsatz(modifiedmatrix,steps[:,[0,1]]) a,b = FeatureKonstruktion.schulterbewegung(modifiedmatrix,steps[:,[0,1]]) c,d = FeatureKonstruktion.armstreckung(modifiedmatrix,steps[:,[0,1]]) elan = pd.DataFrame(elan[:,1:],index=elan[:,0]) elanpass = np.array(elan.ix['1Passgang'])[:,3] elanstock = np.array(elan.ix['1Stockeinsatz'])[:,3] elanarm = np.array(elan.ix['1Armeinsatz'])[:,3] elanschritt = np.array(elan.ix['2Schrittlaenge'])[:,3] elanschub = np.array(elan.ix['2Schub'])[:,3] elanverkrampfung = np.array(elan.ix['2Verkrampfung'])[:,3] elanober = np.array(elan.ix['2Oberkoerper'])[:,3] elanfuss = np.array(elan.ix['2Fussaufsatz'])[:,3] elantiming = np.array(elan.ix['2Timing'])[:,3] elanshwingen = np.array(elan.ix['3Vorschwingen'])[:,3] elanblick = np.array(elan.ix['3Blick'])[:,3] print len(steps) print len(elanpass) print len(elanstock) print len(elanarm) print len(elanschritt) print len(elanschub) print len(elanfuss) print len(elanverkrampfung) print len(elanober) print len(elantiming) print len(elanshwingen) print len(elanblick) new = np.c_[steps,elanpass] new = np.c_[new,elanstock] new = np.c_[new,elanarm] new = np.c_[new,elanschritt] new = np.c_[new,elanschub] new = np.c_[new,elanfuss] new = np.c_[new,elanverkrampfung] new = np.c_[new,elanober] new = np.c_[new,elantiming] new = np.c_[new,elanshwingen] new = np.c_[new,elanblick] plt.subplot(4,1,1) plt.title("passgang") plt.plot(passgang) plt.subplot(4,1,2) plt.title("Stockaufsatz") plt.plot(rightpeak) plt.plot(leftpeak) plt.subplot(4,1,3) plt.title("schulter") plt.plot(a) plt.plot(b, label= "Rechteschulter") plt.subplot(4,1,4) plt.title("Arm") plt.plot(c) plt.plot(d) #plt.plot(d, label= "Rechter Arm") plt.show() file = [] label= [] FeatureFile= np.c_[steps,passgang,rightpeak,leftpeak,a,b,c,d,e,f,g,h,i,j,k] for k in range(4,len(new[1,:])): for t in range(0,len(new)): if new[t,k]==3 or new[t,k]==2 or new[t,k]==1: temp = new[t,k] else: new[t,k]= temp for i in range(0,len(new)): temp = new[i,4] if temp==3: new[i,4:]=3 for i in range(0,len(new)): if new[i,4]==2 or new[i,4]==1: print new[i,4] file.append(FeatureFile[i,:]) label.append(new[i,:]) labelpass = [] filepass = [] for i in range(0,len(new)): if new[i,4]==2 or new[i,4]==1 or new[i,4]== 3: filepass.append(FeatureFile[i,:]) labelpass.append(new[i,:5]) print(label) print(file) np.savetxt("20151127ID005features.csv",file,delimiter="\t") np.savetxt("20151127ID005labels.csv",label,delimiter="\t",fmt="%s") np.savetxt("20151127ID005featurespass.csv",filepass,delimiter="\t") np.savetxt("20151127ID005labelspass.csv",labelpass,delimiter="\t",fmt="%s") print "finished"
def wholedataelan(dataMatrix,elan): matrix, step = StepExtraction.videosteps(dataMatrix[:,:],elan) print step elan = pd.DataFrame(elan[:,1:],index=elan[:,0]) elanpass = np.array(elan.ix['1Passgang'])[:,3] elanstock = np.array(elan.ix['1Stockeinsatz'])[:,3] elanarm = np.array(elan.ix['1Armeinsatz'])[:,3] elanschritt = np.array(elan.ix['2Schrittlaenge'])[:,3] elanschub = np.array(elan.ix['2Schub'])[:,3] elanverkrampfung = np.array(elan.ix['2Verkrampfung'])[:,3] elanober = np.array(elan.ix['2Oberkoerper'])[:,3] elanfuss = np.array(elan.ix['2Fussaufsatz'])[:,3] elantiming = np.array(elan.ix['2Timing'])[:,3] elanshwingen = np.array(elan.ix['3Vorschwingen'])[:,3] elanblick = np.array(elan.ix['3Blick'])[:,3] print len(step) print len(elanpass) print len(elanstock) print len(elanarm) print len(elanschritt) print len(elanschub) print len(elanfuss) print len(elanverkrampfung) print len(elanober) print len(elantiming) print len(elanshwingen) print len(elanblick) new = np.c_[step,elanpass] new = np.c_[new,elanstock] new = np.c_[new,elanarm] new = np.c_[new,elanschritt] new = np.c_[new,elanschub] new = np.c_[new,elanfuss] new = np.c_[new,elanverkrampfung] new = np.c_[new,elanober] new = np.c_[new,elantiming] new = np.c_[new,elanshwingen] new = np.c_[new,elanblick] print new[:,4] for k in range(4,len(new[1,:])): for t in range(0,len(new)): if new[t,k]==3 or new[t,k]==2 or new[t,k]==1: temp = new[t,k] else: new[t,k]= temp for i in range(0,len(new)): temp = new[i,4] if temp==3: print "test" new[i,4:]=3 labeldata = [] for i in range(0,len(new)): if new[i,4]==3 or new[i,4]==2 or new[i,4]==1: print new[i,4] labeldata.append(new[i,:]) labeldata = np.array(labeldata) print labeldata matrixsteps = pd.DataFrame(matrix[labeldata[0,0]:labeldata[0,1],:]) matrix = pd.DataFrame(matrix) for i in range(1,len(labeldata)): matrixsteps = pd.concat([matrixsteps,matrix.iloc[labeldata[i,0]:labeldata[i,1],:]]) label = [] for i in range(0,len(labeldata)): for k in range(labeldata[i,0],labeldata[i,1]): labels = np.array(labeldata[i,4:]) #labels = map(int,labels) label.append(labels) matrixstepspass = np.array(matrixsteps) labelpass = np.array(label) print matrixstepspass print labelpass[:,4] print(len(matrixstepspass)) print(len(labelpass)) plt.subplot(2,1,1) plt.plot(matrixstepspass[:,2:5]) plt.subplot(2,1,2) plt.plot(labelpass[:,0]) plt.show() np.savetxt("dataMatrixpass.csv",matrixstepspass,delimiter="\t") np.savetxt("Labelspass.csv",labelpass[:,0],delimiter="\t",fmt="%s") label =[] for i in range(0,len(labeldata)): temp = labeldata[i,4] if temp != 3: label.append(labeldata[i,:]) label = np.array(label) print label matrix=np.array(matrix) matrixsteps = pd.DataFrame(matrix[label[0,0]:label[0,1],:]) matrix = pd.DataFrame(matrix) for i in range(1,len(label)): matrixsteps = pd.concat([matrixsteps,matrix.iloc[label[i,0]:label[i,1],:]]) label = label[:,:] labelnew = [] for i in range(0,len(label)): for k in range(label[i,0],label[i,1]): labels = np.array(label[i,4:]) #labels = map(int,labels) labelnew.append(labels) print(matrixsteps) print(labelnew) print len(matrixsteps) print len(labelnew) plt.subplot(2,1,1) plt.plot(matrixsteps.iloc[:,2:5]) plt.subplot(2,1,2) plt.plot(labelnew) plt.show() np.savetxt("dataMatrix.csv",matrixsteps,delimiter="\t") np.savetxt("Labels.csv",labelnew,delimiter="\t",fmt="%s")