def evaluate(self, array_datas): """ Create a scatter plot between multiple variables """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas) if command_status == CommandStatus.Error: return result_object if len(df.columns) <= 1: Printer.Print("There needs to be atleast two variables to perform multiscatter plot!") return result_object win = Window.window() f = win.gcf() ax = f.add_subplot(111) if StatContainer.ground_truth is None or len(StatContainer.ground_truth.data) != df.shape[0]: df.dropna(inplace=True) pd.plotting.scatter_matrix(df, alpha=0.2, diagonal='kde', ax=ax) else: gt1 = pd.Series(StatContainer.filterGroundTruth()) df, gt1 = DataGuru.removenan(df, gt1) lut = dict(zip(gt1.unique(), np.linspace(0, 1, gt1.unique().size))) row_colors = gt1.map(lut) pd.plotting.scatter_matrix(df, alpha=0.2, diagonal='kde', c=row_colors, cmap="jet", ax=ax) f.suptitle(cname) win.show() return VizContainer.createResult(win, array_datas, ['multiscatter'])
def evaluate(self, array_datas): """ Create a box plot between multiple variables """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) command_status, df, kl1, _ = DataGuru.transformArray_to_dataFrame( array_datas) win = Window.window() f = win.gcf() ax = f.add_subplot(111) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) if StatContainer.ground_truth is None or len( StatContainer.ground_truth.data) != df.shape[0]: df.dropna(inplace=True) df.boxplot(ax=ax) else: ground_truth = StatContainer.ground_truth.name df[ground_truth] = StatContainer.filterGroundTruth() df.dropna(inplace=True) df.boxplot(by=ground_truth, ax=ax) f.suptitle("") win.show() return VizContainer.createResult(win, array_datas, ['box'])
def evaluate(self, data_frame, array_datas, classifier_algo, pre_evaluate_results=None): """ Train a classifier on multiple arrays """ result_object = ResultObject(None, None, None, CommandStatus.Error) if type(pre_evaluate_results) is not list: Printer.Print("Pre evaluation results failed! Attach bug report!") return result_object win = Window.window() if data_frame is not None: result_object = VizContainer.createResult(win, data_frame, ['cval']) elif array_datas is not None: result_object = VizContainer.createResult(win, array_datas, ['cval']) else: Printer.Print("Provide one of data frame or array datas") return result_object cv_output, aux_output = pre_evaluate_results properties, model_data = aux_output.data result_object.data = [win, properties, model_data, self.processkFoldCV] self.printkValueMessage(cv_output.data[0]) self.updateWindow(win, cv_output.data[1], cv_output.data[2], model_data[1], properties["title"]) self.modify_figure.evaluate(result_object) return result_object
def evaluate(self, array_datas): """ Create a line plot """ sns.set(color_codes=True) command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas, useCategorical=True, expand_single=True, remove_nan=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) elif (df.shape[0] == 0 or (df.shape[1] == 1 and np.issubdtype(array_datas[0].data.dtype, np.number) == False)): Printer.Print("No data left to plot after cleaning up!") return ResultObject(None, None, None, CommandStatus.Error) win = Window.window() f = win.gcf() ax = f.add_subplot(111) ax.set_title(cname) df.plot(ax=ax) win.show() return VizContainer.createResult(win, array_datas, ['line'])
def evaluate(self, array_datas): """ Visualize the relationship between variables """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) df = pd.DataFrame() for array_data in array_datas: if (np.issubdtype(array_data.data.dtype, np.number)) == True: Printer.Print("The data to plot is not categorical, Please use scatter plot") return result_object df[" ".join(array_data.keyword_list)] = array_data.data df.dropna(inplace=True) df = df.pivot_table( index=df.columns[0], columns=df.columns[1], aggfunc=np.size, fill_value=0) Printer.Print("Displaying heatmap") win = Window.window() f = win.gcf() ax = f.add_subplot(111) sns.heatmap(df, ax=ax) win.show() return VizContainer.createResult(win, array_datas, ['heatmap'])
def evaluate(self, image): """ Display the image specified """ try: if image.data_type is DataType.file_name: file_path = image.data.path if not os.path.isfile(file_path): Printer.Print("Cannot find image file: ", file_path) raise RuntimeError curr_image = imread(file_path) result_object = ResultObject( curr_image, image.keyword_list, DataType.image, CommandStatus.Success) else: curr_image = image.data result_object = ResultObject( None, None, None, CommandStatus.Success) image_name = image.keyword_list[0] win = Window.window() plt.imshow(curr_image) plt.gca().axis('off') win.show() Printer.Print("Displaying image" + image_name) except: result_object = ResultObject(None, None, None, CommandStatus.Error) return result_object
def evaluate(self, array_datas): """ Displaying a heatmap for data visualization """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) command_status, df, kl1, _ = DataGuru.transformArray_to_dataFrame( array_datas, remove_nan=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) Printer.Print("Displaying heatmap") win = Window.window() f = win.gcf() if StatContainer.ground_truth is None: sns.clustermap(df, cbar=True, square=False, annot=False, cmap='jet', standard_scale=1) else: gt1 = pd.Series(StatContainer.ground_truth.data) lut = dict(zip(gt1.unique(), "rbg")) row_colors = gt1.map(lut) sns.clustermap(df, standard_scale=1, row_colors=row_colors, cmap="jet") win.show() return VizContainer.createResult(win, array_datas, ['heatmap'])
def evaluate(self, array_datas): """ Create a violin plot for multiple variables """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas, remove_nan=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) win = Window.window() f = win.gcf() ax = f.add_subplot(111) if StatContainer.ground_truth is None or len(StatContainer.ground_truth.data) != df.shape[0]: df.dropna(inplace=True) sns.violinplot(data=df, ax=ax) else: ground_truth = " ".join(StatContainer.ground_truth.keyword_list) df[ground_truth] = StatContainer.filterGroundTruth() df.dropna(inplace=True) df1 = pd.melt(df, id_vars=ground_truth) sns.violinplot(data=df1, ax=ax, x='variable', y='value', hue=ground_truth) win.show() return VizContainer.createResult(win, array_datas, ['violin'])
def evaluate(self, data_frame, classifier_model): """ Run a trained classifier on multiple arrays """ result_object = ResultObject(None, None, None, CommandStatus.Error) # Get the data frame sns.set(color_codes=True) #command_status, df, kl1, _ = DataGuru.transformArray_to_dataFrame(array_datas) df = data_frame.data # if command_status == CommandStatus.Error: # return ResultObject(None, None, None, CommandStatus.Error) if StatContainer.ground_truth is None: Printer.Print("Please set a feature vector to ground truth by", "typing set ground truth to", "to get the prediction accuracy") result_object = ResultObject(None, None, None, CommandStatus.Error) return result_object else: df = DataGuru.removeGT(df, StatContainer.ground_truth) Y = StatContainer.ground_truth.data # Remove nans: df, Y = DataGuru.removenan(df, Y) X = df.values # Get the classifier model trained_model = classifier_model.data model = trained_model['Model'] scaler = trained_model['Scaler'] # Scale the values based on the training standardizer X = scaler.transform(X) # Code to run the classifier # Plot the classification result win = Window.window() f = win.gcf() ax = f.add_subplot(111) Printer.Print('Running the trained classifier...') predictions = model.predict(X) accuracy = metrics.accuracy_score(predictions, Y) Printer.Print("Accuracy : %s" % "{0:.3%}".format(accuracy)) cm = metrics.confusion_matrix(Y, predictions) DataGuru.plot_confusion_matrix(cm, np.unique(Y), ax, title="confusion matrix") win.show() # TODO Need to save the result result_object = ResultObject(None, None, None, CommandStatus.Success) return result_object
def evaluate(self, data_frame, array_datas): """ Run Isomap on a dataset of multiple arrays """ # Get the data frame if data_frame is not None: df = data_frame.data df = DataGuru.convertStrCols_toNumeric(df) cname = data_frame.name elif array_datas is not None: command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas, useCategorical=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) else: Printer.Print("Please provide data frame or arrays to analyze") return ResultObject(None, None, None, CommandStatus.Error) Y = None if StatContainer.ground_truth is not None: df = DataGuru.removeGT(df, StatContainer.ground_truth) Y = StatContainer.filterGroundTruth() df, Y = DataGuru.removenan(df, Y) # Remove nans: else: df.dropna(inplace=True) # Get the Isomap model # Code to run the classifier X = df.values # Get a standard scaler for the extracted data X scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) # Train the classifier win = Window.window() properties = self.createDefaultProperties() properties['title'] = cname # return ResultObject(None, None, None, CommandStatus.Success) if data_frame is not None: result_object = VizContainer.createResult(win, data_frame, ['ismp']) else: result_object = VizContainer.createResult(win, array_datas, ['ismp']) result_object.data = [win, properties, [X, Y], self.updateFigure] self.updateFigure(result_object.data) self.modify_figure.evaluate(result_object) return result_object
def evaluate(self, array_data): """ Create a pie plot """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) stTitle = " ".join(array_data.keyword_list) if StatContainer.conditional_array is not None and len( StatContainer.conditional_array.data) == array_data.data.size: inds = StatContainer.conditional_array.data Printer.Print("Nfiltered: ", np.sum(inds)) else: inds = np.full(array_data.data.size, True) col_data = pd.Series(array_data.data[inds], name='array') col_data.dropna(inplace=True) try: uniqVals, inv, counts = np.unique(col_data, return_inverse=True, return_counts=True) except: return ResultObject(None, None, None, CommandStatus.Error) if len(uniqVals) > self.max_unique: if isinstance(uniqVals[0], str): best_idx = np.argpartition(counts, -self.max_unique)[-self.max_unique:] idx = np.isin(inv, best_idx) col_data = col_data[idx] elif np.issubdtype(col_data.dtype, np.number): # Convert to categorical col_data = pd.cut(col_data, 10) uniqVals = True else: uniqVals = None if uniqVals is not None: counts = pd.Series(np.ones(col_data.size), name='count') concat_df = pd.concat([counts, col_data], axis=1) ds = concat_df.groupby(col_data.name).sum()['count'] else: Printer.Print("Too many unique values to plot on a pie chart\n") Printer.Print("Please select another chart type") return result_object win = Window.window() f = win.gcf() ax = f.add_subplot(111) ds.plot.pie(figsize=(8, 8), ax=ax) ax.set_title(stTitle) ax.set_xlabel('') ax.set_aspect('equal') win.show() return VizContainer.createResult(win, array_data, ['pie'])
def evaluate(self, array_datas): """ Create a histogram for multiple variables """ sns.set(color_codes=True) command_status, df, kl1, _ = DataGuru.transformArray_to_dataFrame( array_datas, useCategorical=True, remove_nan=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) dCol = df[df.columns[0]] try: uniqVals, inv, counts = np.unique(dCol, return_inverse=True, return_counts=True) except: return ResultObject(None, None, None, CommandStatus.Error) if len(uniqVals) > self.max_unique: if isinstance(uniqVals[0], str): best_idx = np.argpartition(counts, -self.max_unique)[-self.max_unique:] idx = np.isin(inv, best_idx) dCol = dCol[idx] else: uniqVals = None if uniqVals is not None and isinstance(uniqVals[0], str): max_len = max([len(uniqVal) for uniqVal in uniqVals]) else: max_len = 0 if (uniqVals is None and not np.issubdtype(dCol.dtype, np.number)): Printer.Print("Too many unique values in non-numeric type data") return ResultObject(None, None, None, CommandStatus.Error) win = Window.window() f = win.gcf() ax = f.add_subplot(111) # TODO Create an argument for setting number of bins if uniqVals is not None: if len(uniqVals) > 5 and max_len > 8: df = dCol.to_frame(name=kl1[0]) sns.countplot(y=kl1[0], data=df, ax=ax) else: df = dCol.to_frame(name=kl1[0]) sns.countplot(x=kl1[0], data=df, ax=ax) elif np.issubdtype(dCol.dtype, np.number): df.plot.hist(stacked=True, ax=ax) win.show() return VizContainer.createResult(win, array_datas, ['histogram', 'hist'])
def read(self, file_path, keyword_list): try: data = imread(file_path) except: return ResultObject(None, None, None, command_status=CommandStatus.Error) win = Window.window() #f = win.gcf() plt.imshow(data) plt.gca().axis('off') win.show() # Initialize image manipulation command group result = ResultObject(data, keyword_list, DataType.image, CommandStatus.Success, add_to_cache=True) result.createName(keyword_list) return result
def evaluate(self, array_datas): """ Create a scatter plot between two variables """ sns.set(color_codes=True) command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas) if command_status == CommandStatus.Error: Printer.Print("please try the following command:", "Visualize comparison between...") return ResultObject(None, None, None, CommandStatus.Error) properties = self.createDefaultProperties() properties['title'] = cname win = Window.window() row_colors = None if StatContainer.ground_truth is None or len(StatContainer.ground_truth.data) != df.shape[0]: df.dropna(inplace=True) if df.shape[0] == 0: return ResultObject(None, None, None, CommandStatus.Error) array = df.values else: gt1 = pd.Series(StatContainer.filterGroundTruth()) df, gt1 = DataGuru.removenan(df, gt1) if df.shape[0] == 0: return ResultObject(None, None, None, CommandStatus.Error) lut = dict(zip(gt1.unique(), np.linspace(0, 1, gt1.unique().size))) row_colors = gt1.map(lut) array = df.values result_object = VizContainer.createResult( win, array_datas, ['scatter2d']) result_object.data = [win, properties, [ array, row_colors, kl1], self.updateFigure] self.updateFigure(result_object.data) self.modify_figure.evaluate(result_object) return result_object
def evaluate(self, array_datas): """ Find the correlation between two or more variables """ result_object = ResultObject(None, None, None, CommandStatus.Error) if len(array_datas) < 2: Printer.Print("Need atleast two arrays to compute correlation") return ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) command_status, df, kl1, _ = DataGuru.transformArray_to_dataFrame( array_datas, remove_nan=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) corr_res = df.corr() if len(array_datas) == 2: Printer.Print("The correlation between ", kl1[0], " and ", kl1[1], " is ", str(corr_res.values[0][1])) Printer.Print("Displaying the result as a heatmap") win = Window.window() f = win.gcf() ax = f.add_subplot(111) sns.heatmap(corr_res, cbar=True, square=True, annot=True, fmt='.2f', annot_kws={'size': 15}, xticklabels=df.columns, yticklabels=df.columns, cmap='jet', ax=ax) win.show() return VizContainer.createResult(win, array_datas, ['correlation'])
def evaluate(self, array_datas): """ Create a bar plot between multiple variables """ result_object = ResultObject(None, None, None, CommandStatus.Error) sns.set(color_codes=True) command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) if StatContainer.ground_truth is None: gtVals = np.ones(df.shape[0]) ground_truth = 'ground_truth' else: gtVals = StatContainer.filterGroundTruth() ground_truth = StatContainer.ground_truth.name if len(gtVals) != df.shape[0]: print("ground truth does not match with df shape") print(len(gtVals), df.shape[0]) gtVals = np.ones(df.shape[0]) ground_truth = 'ground_truth' # Remove nans: df[ground_truth] = gtVals df.dropna(inplace=True) gtVals = df[ground_truth] uniqVals = StatContainer.isCategorical(gtVals) binned_ground_truth = False if uniqVals is None and np.issubdtype(gtVals.dtype, np.number): # Convert to categorical df[ground_truth] = pd.cut(gtVals, 10) binned_ground_truth = True if binned_ground_truth is True or uniqVals is not None: gb = df.groupby(ground_truth) df_mean = gb.mean() df_errors = gb.std() if uniqVals is not None and isinstance(uniqVals[0], str): truncated_uniqVals, _ = StatContainer.removeCommonNames( df_mean.index) df_mean.index = truncated_uniqVals df_errors.index = truncated_uniqVals # Number of uniq_vals x number of arrs df_mean_shape = df_mean.shape if (not binned_ground_truth and df_mean_shape[1] >= df_mean_shape[0]): df_mean = df_mean.T df_errors = df_errors.T else: Printer.Print("Ground truth could not be mapped to", "categorical array\n") Printer.Print("Please clear or select appropriate ground truth") return result_object properties = self.createDefaultProperties() properties['title'] = cname if uniqVals is not None and isinstance(uniqVals[0], str): max_len = max([len(uniqVal) for uniqVal in uniqVals]) else: max_len = 0 if (binned_ground_truth or (uniqVals is not None and len(uniqVals) > 5 and max_len > 8)): properties["horizontal"] = True if binned_ground_truth: properties["overwrite_labels"] = True properties["ylabel"] = StatContainer.ground_truth.name win = Window.window() result_object = VizContainer.createResult(win, array_datas, ['bar']) result_object.data = [ win, properties, [df_mean, df_errors], self.updateFigure ] self.updateFigure(result_object.data) self.modify_figure.evaluate(result_object) return result_object
def evaluate(self, data_frame, classifier_algos): """ Train a classifier on multiple arrays """ result_object = ResultObject(None, None, None, CommandStatus.Error) # Get the data frame sns.set(color_codes=True) df = data_frame.data #command_status, df, kl1, _ = DataGuru.transformArray_to_dataFrame(array_datas) # if command_status == CommandStatus.Error: # return ResultObject(None, None, None, CommandStatus.Error) # Get the ground truth array if StatContainer.ground_truth is None: Printer.Print("Please set a feature vector to ground truth by", "typing set ground truth before using this command") result_object = ResultObject(None, None, None, CommandStatus.Error) return result_object else: df = DataGuru.removeGT(df, StatContainer.ground_truth) Y = StatContainer.ground_truth.data # Remove nans: df, Y = DataGuru.removenan(df, Y) Printer.Print("Training classifier using the following features:") Printer.Print(df.columns) # Get all the classifier models to test against each other modelList = [] Printer.Print("Testing the following classifiers: ") for classifier_algo in classifier_algos: model = (classifier_algo.data[0]) Printer.Print(classifier_algo.name) modelList.append({'Name': classifier_algo.name, 'Model': model}) # Code to run the classifier X = df.values # Get a standard scaler for the extracted data X scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) Printer.Print('Finding the best classifier using', 'k fold cross validation...') all_cv_scores, all_mean_cv_scores, all_confusion_matrices = DataGuru.FindBestClassifier(X, Y, modelList, 10) Printer.Print('\n\nPlotting the confusion matrices...\n') for iter in range(len(modelList)): win = Window.window() f = win.gcf() ax = f.add_subplot(111) DataGuru.plot_confusion_matrix(all_confusion_matrices[iter], np.unique(Y), ax, title=modelList[iter]['Name']) win.show() Printer.Print("\n\nBest classifier is " + modelList[np.argmax(all_mean_cv_scores)]['Name'] + " with an accuracy of - %.2f%% " % max(all_mean_cv_scores)) # TODO Need to save the model # Ask user for a name for the model result_object = ResultObject(None, None, None, CommandStatus.Success) return result_object
def evaluate(self, data_frame, array_datas): """ Run pca on a dataset of multiple arrays """ # Get the data frame if data_frame is not None: df = data_frame.data df = DataGuru.convertStrCols_toNumeric(df) cname = data_frame.name elif array_datas is not None: command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas, useCategorical=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) else: Printer.Print("Please provide data frame or arrays to analyze") return ResultObject(None, None, None, CommandStatus.Error) Y = None if StatContainer.ground_truth is not None: df = DataGuru.removeGT(df, StatContainer.ground_truth) Y = StatContainer.filterGroundTruth() # Remove nans: df, Y = DataGuru.removenan(df, Y) else: df.dropna(inplace=True) # Code to run the classifier X = df.values # Get a standard scaler for the extracted data X scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) # Train the classifier pca = PCA(n_components=2) pca_res = pca.fit_transform(X) win = Window.window() f = win.gcf() ax = f.add_subplot(111) if Y is None: sc = ax.scatter(pca_res[:, 0], pca_res[:, 1], cmap="jet", edgecolor="None", alpha=0.35) else: sc = ax.scatter(pca_res[:, 0], pca_res[:, 1], c=Y, cmap="jet", edgecolor="None", alpha=0.35) cbar = plt.colorbar(sc) cbar.ax.get_yaxis().labelpad = 15 cbar.ax.set_ylabel(StatContainer.ground_truth.name, rotation=270) ax.set_title(cname) win.show() # return ResultObject(None, None, None, CommandStatus.Success) if data_frame is not None: return VizContainer.createResult(win, data_frame, ['pca']) else: return VizContainer.createResult(win, array_datas, ['pca'])
def evaluate(self, data_frame, array_datas, target): """ Run clustering on a dataset of multiple arrays """ # Get the data frame if data_frame is not None: df = data_frame.data cname = data_frame.name elif array_datas is not None: command_status, df, kl1, cname = DataGuru.transformArray_to_dataFrame( array_datas, useCategorical=True) if command_status == CommandStatus.Error: return ResultObject(None, None, None, CommandStatus.Error) else: Printer.Print("Please provide data frame or arrays to analyze") return ResultObject(None, None, None, CommandStatus.Error) Y = None if StatContainer.ground_truth is not None: df = DataGuru.removeGT(df, StatContainer.ground_truth) Y = StatContainer.filterGroundTruth() # Remove nans: df, Y = DataGuru.removenan(df, Y) else: df.dropna(inplace=True) # Get the tsne model # Code to run the classifier X = df.values # Get a standard scaler for the extracted data X scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) # Train the classifier numbers = findNumbers(target.data, 1) if numbers != [] and numbers[0].data > 0: num_clusters = int(numbers[0].data) else: num_clusters = 2 # If not specified use 2 clusters kY = self.performOperation(X, num_clusters) result_objects = [] if StatContainer.ground_truth is not None: df_res = pd.DataFrame() df_res['ground_truth'] = Y df_res['clustering_result'] = kY df_res.pivot_table(index=df_res.columns[0], columns=df_res.columns[1], aggfunc=np.size, fill_value=0) win = Window.window() f = win.gcf() ax = f.add_subplot(111) df_res = DataGuru.convertStrCols_toNumeric(df_res) sns.heatmap(df_res, ax=ax) win.show() if data_frame is not None: result_object = VizContainer.createResult( win, data_frame, ['clstr.fig']) else: result_object = VizContainer.createResult( win, array_datas, ['clstr.fig']) result_objects.append(result_object) result_object = ResultObject(kY, [], DataType.array, CommandStatus.Success) result_object.createName(cname, command_name="clstr", set_keyword_list=True) result_objects.append(result_object) return result_objects