#backgrounds = [ TTZtoLLNuNu ] samples = backgrounds + [signal] for sample in samples: sample.setSelectionString(selectionString) if args.small: sample.reduceFiles(to=1) mvas = [bdt1, bdt2, bdt3, bdt4, mlp1, mlp2, mlp3] ## TMVA Trainer instance trainer = Trainer( signal=signal, backgrounds=backgrounds, output_directory=mva_directory, plot_directory=plot_directory, mva_variables=mva_variables, label="Test", fractionTraining=args.trainingFraction, ) weightString = "(1)" trainer.createTestAndTrainingSample( read_variables=read_variables, sequence=sequence, weightString=weightString, overwrite=args.overwrite, ) #trainer.addMethod(method = default_methods["BDT"]) trainer.addMethod(method=default_methods["MLP"])
samples = backgrounds + [signal] for sample in samples: sample.setSelectionString(selectionString) if args.small: sample.reduceFiles(to=1) mvas = [ all_mlp_ncnc1s0c3e0c5 ] #, all_mlp_np5s0c3e0c5 ] #, all_mlp_ncnc1s0c5e0c8, all_mlp_ncnp5c1s0c5e0c8, all_mlp_np40, all_mlp_np7s0c5e1 ] ## TMVA Trainer instance trainer = Trainer( signal=signal, backgrounds=backgrounds, output_directory=mva_directory_twz_wz, mva_variables=mva_variables, label="TWZ_3l", fractionTraining=args.trainingFraction, ) weightString = "(1)" trainer.createTestAndTrainingSample(read_variables=read_variables, sequence=sequence, weightString=weightString, overwrite=args.overwrite, mva_variables=all_mva_variables) #trainer.addMethod(method = default_methods["BDT"]) #trainer.addMethod(method = default_methods["MLP"]) for mva in mvas: